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A B S T R A C T  

THRESHOLD ANALYSIS OF 

PHASE LOCKED LOOPS 

BY 

PAUL W. OSBORNE 

ADVISER: DONALD L. SCHILLING 

A new method for estimating the expected number of spikes in phase 

locked loops is presented. Unlike previous analyses, the technique developed 

here can be applied to phase locked loops of any order,  with or  without 

modulation. The modulation must be deterministic, though a random 

modulating signal can, in principle, be employed if it is approximated by 

a deterministic quasi-random signal. 

Feedback (FMFB) can also be analysed by the method. 

To perform the required spike estimation, it is assumed that the 

The Frequency Modulator with 

noise is  a deterministic function, which is defined a s  "most-likely noise". 

The rea l  noise driving the phase locked loop is derived f rom an IF fil ter 

driven by white noise. 

noises x (t) and y (t) by the 'conditional expectations 

We replace the resulting low-pass equivalent 

x 1 (t) = E [ x(t) / X(O), k(0) ] 

Y 1  (t) = E r x(t) / Y(0)Y Y(0) 1 
The time t = 0, is defined a s  the time at which the noise trajectory c rosses  

the axis of the in-phase noise component y(t). 

is the mid-spike or  doublet time, depending on whether o r  not the noise 

In a F M  discriminator, this 
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vector, placed on the end of the ca r r i e r  vector, does or  does not encircle 

the origin. Thus, for a given filter, x (t) and y (t) depend only on the 

four initial conditions x(0) = 0,x (0), y(O), and); (0). Fo r  IF fil ters of interest  

(finite bandwidth), the noises x (t), y1 (t) approach zero for .  1 t 1 >>O. 

1 1 

1 
The differential equations of the phase locked loop contain the noises 

x(t), and y(t). These a r e  replaced by the models x1 (t), and y1 (t). The 

differential equations a r e  solved on a digital computer, for  a particular 

choice of the parameters  x ( O ) ,  y(O), and y(0). The solution is started at  a 

time sufficiently negative so that the noise models a r e  close to zero ( t < < O ) ,  

and continued to a time when the solution reaches a steady state value, 

which occurs after the noise models have decayed to  zero f t > > O ) .  A fourth 

order  Runge-Kutta starting procedure with a fourth order  Moulton's 

predictor-corrector continuation is used. A hunting procedure in x ( O ) ,  

y(O), and y ( O ) ,  i s  employed, to determine surfaces which define regions in 

the x ( O ) ,  y(O), y(0)  space, where the steady state phase e r r o r  between the 

solution and the modulating phase is either 0, t ZIT o r  -Z IT .  

number of spikes per second is then computed a s  the expected number of 

The expected 

times thesrandom vector X ( O ) ,  y(O), y(0)entersthe t ZIT and -ZIT regions. 

The method is applied in this dissertation to the first, second, and 

third order  loops, with and without modulation, for modulation indeces of 

3 and 12, and also to the FM'Discriminator (which can be represented by a 

PLL with infinite loop gain). The IF filter used was a cascade of two 

identical single-tuned stages, each stage, having a normalized 3 db band- 

width of - t 1 radian per second. 

form. 

The results a r e  presented in normalized 

Experimental resul ts  a r e  presented, which compare favourably to 

the theoretical results obtained. 

-2- 



CHAPTER 1 

INTRODUCTION 

1. 1 Statement of the Problem 

The Phase Locked Loop (PLL) is an oft-used device for obtaining 

threshold extension in F M  demodulation. Threshold occurs when the signal- 

to-noise ratio improvement of FM demodulation is degraded by some fixed 

amount (1 db is standard) by the onset of spikes of a r ea  t 271. .'* The prob- 

lem to be solved in this Dissertation, is to estimate the expected number 

of spikes obtained in a given PLL, with and without modulation. 

this, the threshold performance of the PLL can be predicted. 

- 

From 

1 . 2  Summary of Pr ior  Work 

Fokker -Planck techniques have been applied to the problem of 
1 . 3  estimating the threshold performance of P L L  by Tikhonov'' and Viterbi.  

Using this technique, an  exact solution has been obtained for the first order  

PLL, and approximate results for the second order PLL, both without 

modulation (i. e. P L L  is used for  tracking rather  than demodulation), and 

driven byLwhite noise. that an It was indicated in Viterbi's paper'' 

approximate solution for the first order  PLL with modulation could also be 

obtained. However, for higher order  loops, with modulation, the Fokker - 
Planck equation becomes intractible. The a s  sumption of white noise input, 

which is equivalent to saying that the PLL bandwidth is much narrower than 

the IF bandwidth preceding it, is also restrictive,  

Boonton's quasi-linearization technique" has been applied to the 

PLL threshold problem by Develet. This paper does take the modulation 

into account, but also assumes a white noise input. His assumption that the 

phase e r r o r  of the PLL has an  almost-Gaussian density, together with his 

unusual definition of threshold, yields the un-physical resul t  that the output 



noise variance becomes unbounded, when the input signal-to-noise ratio 

falls below a certain level. 

Volterra 's  functional expansion has been applied to PLL threshold 

analysis by Van Trees .  However, the method becomes impractically 

complex when one attempts to apply it to  higher order  PLLs, especially if  

one wishes to take the modulation into account. 

R .  C. Tausworthe presents another approximate PLL threshold 

analysis, ' *  

applicable to c a r r i e r  tracking, but not to demodulation. 

but neglects the effect of modulation. Thus his analysis is 

Schilling and Billig" attacked the problem by applying Rice's 

technique" for a F M D to the PLL.  Modulation was considered. In a 

se r ies  of papers, '. lo Schilling postulated and then showed that the output 

of a PLL can be considered to consist of the demodulated signal, ordinary 

F M  noise and spike noise. The simple procedure employed to calculate 

the expected number of spikes/sec, while analytically tractible, resulted 

in thresholds up to  7 db better than those actually obtained. Schilling also 

showed, in thse papers, that the PLL demodulation required a larger  

bandwidth, than the IF fil ter .  It is shown here (Sec. 1. 4. 3 )  that this is not 

strictly correct .  

Schilling's representation of the PLL outputs coupled with the use of 

the ''most likely" input noise; form the foundation of this dissertation. 

1. 3 Summary of Results Obtained 

In contradistinction to previous analyses, the effects of the IF filter 

preceding the PLL (implying non-white noise input) and of the modulation, 

will be taken into account. Results a r e  presented for a constant-frequency- 

offset modulation. This is equivalent to square-wave modulation, where the 

frequency of the square wave i s  low enough, so'that spikes occurring a t  

-4- 



transitions of the square wave constitute a negligible proportion of the 

total number of spikes present. Note, also that the square wave modulation 

must have rounded corners  and finite r i se  times, so that the F M  signal is 

compatible with IF filtering. 

output of a PLL increases when the frequency offset increases,  the results 

obtained represent a "worst-case" solution. The magnitude of this constant- 

frequency-offset modulation i s  Am = Po m, the peak deviation of a sinusoidal 

modulation of frequency o radians per second, and a modulation index 

of P. In Chapter 7, it is shown how to apply this method to any deterministic 

modulation . 

Since the number of spikes produced at the 

m 

The results obtained assume, that the spikes a r e  independent and have 

an a rea  of t 2 ~ .  Since spikes a r e  caused by rotations of the noise vector 

about-the c a r r i e r  vector, the spikes must have a reas  of 2.rr k where k = L, 

2,  3, . . . 
rotations (k> 1) a r e  relatively infrequent. 

results show that at and above threshold the spikes a r e  relatively independ- 

ent and do not occur in bursts.  

- 

The experimentally obtained results indicate that multiple 

In addition, the experimental 

The results of this technique a r e  of course approximate, since 

deterministic models (see Chapter 2) a r e  used for the noise, and the above 

approximations a r e  made. 

Theoretical results a r e  presented in  Chapter 4, and experimental 

results and verification of the Theory is discussed in  Chapter 5 .  It is 

shown that threshold performance of the PLL improves a s  the order  of the 

PLL increases.  It is also shown, for the second and third order  loops, that 

the threshold is slightly better for a relative modulation index of 12 than for 

one of 3.  The threshold, with modulation, (for PLL gains suitable for use 

with a modulation index of 3)  is 6 db f o r  a second order  PLL, .and 5. 2 db 

-5- 



for the third order  PLL, as compared to a 8.9 db fo r  the F M D. 

PLL Gains a r e  suitable for use with a modulation index of 12, the above 

figures become 7.5 db, 5 db and 1 .5  db for the first, second and third 

order  PLL' s respectively, while it is 10.8 db for the F M D. 

When the 

With a 

constant offset modulation of O w  = P w  m, thresholds of 7.2 db, and 6 .3  db 

were obtained for the second and third order  loops respectively, and a 

modulation index of 3 .  F o r  a modulation index of 12, these thresholds 

become 7 . 2  db and 4.2 db f o r  the second and third order  PLL' s respectively, 

and 10. 2 db for  the f i r s t  order  PLL. 

1. 4 Mathematical Formulation of the Problem 

1. 4. 1 F M  Discriminator 

The output of an F M  Discriminator, when integrated is: 

x(t) cos am t y(t)  s in  Gm 

1 t x ( t )  sin Gm-y(t) cos a m ) (1.4. 1) VF M D  (t) = Qjm (t) + arctan 

where 

@ (0) = phase of the modulating signal m 

x(t) = quadrature lowpass equivalent noise 

y(t) = in phase lowpass equivalent noise 

A spike i s  obtained from the FM Discriminator output, when the 

arctan ( e )  jumps - t 2 ~ r  1 . 9  . 

1.4.2 First Order Phase Locked Loop 

A block diagram of a first order  phase locked loop is shown-in Figure 

The differential equation describing the loop is easily shown to be 1. 4. 1. 

. 
@ t G sin (@-am) = G (x(t) cos @ t y (t) s in  @) (1.4.2) 

-6- 
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where @ = phase of VCO output 

G = loop gain and 3 db bandwidth of P L L  

We le t  the modulating signal be 2n Af. Thus Grn (t) = (27r &)t. 

When considering noise, this represents a "worst case" solution (see Sec. 

5.4.  6 where it is shown that the spike rate  increases with deviation). The 

solution of Eq. 1. 4. 2 with no noise is 

2T &) @ (t)  = (2n Af)t - arcsin(- G (1.4. 3)  

For  proper operation of the PLL (low distortion), the e r r o r  voltage 

(@ - Qm) must be much smaller,  in magnitude, than ~ / 2 ,  o r  

T r  ) << - 2n Af aresin ( - 
G 2 (1.4.4)  

which implies that 

G > >  271. l A f l  (1 .4 .5)  

Notice that if the IF half-bandwidth is ( p t  1) f m  (Carson ' s  rule), and Af 

is approximately equal to /3 f 

is much greater than the IF bandwidth. 

not white). 

then the bandwidth G of the f i r s t  order  PLL my 

(Thus the input noise i s  certainly 

1 .4 .3  Second Order Phase Locked Loop 

A block diagram of a second-order constant-plus -integral phase locked 

loop i s  shown in  Figure 1. 4. 2 The differential equation describing the loop 

is: .. 
@t 2G1 [x(t) s in  dj -y(t) cos @ t cos (Q, - @,)]@ t G1 G2 sin ( @  - Qm) 

. 
= GI [ (28 t G2 X)  COS 6, t (2y t G ) sin @ t Qm cos ( ZP-ZPm)] (1. 4. 6 )  

2Y 

where Q, i s  the phase of the VCO output 

GI (2 t G2/S) is the t ransfer  function of the constant plus integral 
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fi l ter .  

When there i s  no noise, and I @ - @  
the PLL equation becomes 

IT 1 << - (so that the distortion i s  small), m 2 

I3 (for reasons given in the next paragraph) we let  

G1 = G I G  

G 2 = G G  

Equation 1. 4. 8 reduces to 

@(PI = am (P) 
p 2 t n  G p t  G2 

(1. 4. 8) 

(1. 4. 9a) 

(1. 4. 9b) 

(1.4. 10) 

The 3 db bandwidth of the PLL is 6 t 2 G = 2.05 G. 

A more illuminating way to view this loop is to consider the transfer 

between the modulating phase and the e r r o r  phase of the loop, since for 

proper operation, (low distortion) this e r r o r  phase must be much l e s s  than 

T / 2  (See Section 1. 4. 6) .  Then 

3 

(1.4. 11) 

This represents  a high pass filter with a 3 db cut-off frequency of G radians 

per  second. This means that the phase e r r o r  is small  f o r  modulating 

frequencies much l e s s  than G. The choice of G1 and GZ made by Eqs. 

(1. 4. 9a) and (1. 4. Sb), makes this high pass filter maximally flat. 

was found to give the best performance, though only slghtly better than 

critically damped o r  other pole positions which were employed. 

result  is shown in Appendix F, but which can best  be understood after the 

This 

This 

concept of "Spike Boundaries" have been discussed (Chapter 4). For  

-10- 



proper operation, the modulating frequencies must be considerably l e s s  

than G, in  order  to maintain a small phase e r r o r  (for low distortion). 

the e r r o r  bandwidth G is of more practical interest  than the PLL bandwidth. 

Fo r  example, if 

Thus, 

0 (t) = Psin w t. m m 
2 

(1. 4. 13) 

(1. 4. 14) 

1.4. 4 RC Loop Fi l ter  

A second order phase locked loop with an R C  loop filter was considered, 

but gave poorer results, since, to have the same distortion performance, 

its bandwidth is larger.  

The differential equation for this PLL is 

ioD . 
0 t CY @ t CY G sin (a- am) = CY G(x( t )  cos b j t  y(t) sin 0) 

CY where - is the transfer of the RC filter. Stcv 

Thi 

CYG 
@ =  Gm (PI 

p 2 t a p t  C Y G  

is maximally flat for CY = ZG. The e r r o r  phase tran 

2 
P t 2 G P  

p2' t 2 G P t Z G 2  
@ = (Qm-bj) = am (P) e 

(1. 4. 15) 

(1.4. 16) 

fer  is given by: 

(1. 4. 17) 

If Qm (t) = Psin w t then m 

-11- 



2 G w m  2 2  

2 ) sin [w t - a r c  tan ( 
m 2 G Z - w m  

= P J :m4++7 * m  

m 
2G - a r c  tan ( -)I w m 

(1. 4. 18) 

The same distortion is  generated in the two loops if the magnitude of the 

phase e r ro r s ,  given by Eqs. 1 .4 .12  and 1.4.  18, a r e  the same. Thus, 

equating the squares of these magnitudes, dropping out the term,  and 

dividing by w we get: 4 
m 

1 t 4 ( - 3  

1 t  ($)i 1 + 4 ( 2 )  

- - 
4 

1 
(1. 4. 19) 

where the subscripts C I  and RC refer to constant plus integral and resis t -  

ance capacitance filter s, re spec tively . 

Since the 3 db lower cut-off frequency of the RC second order  loop phase 

e r r o r  t ransfer  is 2 6  -1- 4 GRc = 2. 91 GRC radians per second (from 

Eq. 1 .4 .  17), we rearrange 1. 4. 19  to get 

1 t  tq - = 

In order  to  satisfy Eq. 1. 4.20, 

(1.4.20) 

(1.4.21) 

(1.4.22) 

Since the cut-off frequency of the constant plus integral phase locked loop 

phase e r r o r  t ransfer  f rom Eq. (1.4.11) is just 2. 05 Gcl this cut-off 

-12- 



frequency of the R C  phase locked loop phase e r r o r  transfer must be more 

than twice a s  large a s  that of the constant plus integral PLL when both 

loops develop the same distortion. 

1 . 4 . 5  Third Order Phase Locked Loor, 

A block diagram of a third order constant-plus-integral plus double 

integral PLL, is shown in Fig. 1.4. 3. The differential Eq. describing the 

loop is 
... 
zh = G1 B (t) t G1G2 6 (t) t G1G2G3 e (t) 

where e(t) = - sin (zh - a,) t x(t) cos @ t y(t)  s in  

G1 t GlG2 / S  t GlG2G3/S2 

(1. 4. 23) 

ip 

i s  the transfer function of the PLL 

filter. 

IT When there is no noise and 1 @-Gml << the PLL equation becomes, 

". .. 
@ t G1 @ t GlG2 @ t G1G2G3Q' = G1am t GlG2 ihm t G1G2G3 Gm (1.4.24)  

Again, considering the phase e r r o r ,  we let  G = 2 G, G2 = G, and 1 

G = G/2, which makes the phase e r r o r  transfer maximally flat, 3 

3 
@,(PI = Qm (P)-@(P) = 3 qm (PI 

p t 2G p2 t 2G2 p t G3 
(1 .4 .25 )  

This high pass filter has a cut-off frequency of G radians per second. 

to maintain low distortion, the modulating frequencies must be considerably 

Again, 

l e s s  than this. If @ (t) = p sinwmt the phase e r r o r  developed is m 

2 2G wm-w 3 
Qe (t) = PW m 

m 

sin wmt  - a r c  tan (G3 - m:jl J z F  2Gwm 
(1.4. 26) 

F r o m  the above equation, it is clear that for low distortion, G must be such 

-1 3- 



THIRD ORDER PLL 

FIG. 1.4.3 
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that, 

5 
IT PWm << - 2 

1 
L T F  m 

I 

4 2  'F; or  G > > m m [  -Z p - 11 
IT 

(1. 4. 27) 

(1. 4. 28) 

In making comparisons between the performances of the second and 

third order  PLL'  s for different modulation indices p, the gain G in Eqs. 

1, 4, 12 and 1.4.26 were adjusted to make the magnitude of the phase e r r o r s  

equal. 

1.4. 6.  On Using the Phase E r r o r  Transfer of PLLs  

The input-output and phase e r r o r  amplitude responses (derived from 

Eqs. 1. 4. 10 and 1. 4. 11 respectively) a r e  plotted in Fig. 1. 4. 4 below. If 

1.8 f- 

w 

Fig. 1 .4 .4  Input-Output and Phase E r r o r  Responses of 

Constant-plus-Integral PLL 

the phase e r r o r  is to be less than 0. 1 in  magnitude, when the modulating 
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phase is /3 sin wmt, where /3 = 3, then the modulating frequencies must l ie  

below that indicated by the broken line in Fig. 1. 4. 4. The 3 db bandwidth 

of the loop (indicated by the Irx1I on the frequency response curve) of about 

2G is quite far removed f rom the frequency indicated by the broked line. 

Given the amount of phase e r r o r  (which is related to  the harmonic 

and intermodulation distortion) one can tolerate, one can see at  a glance 

a t  the phase e r r o r  amplitude response, what range of modulating frequencies 

the PLL will t rack or  demodulate successfully, 

response of the PLL (I H(w )I ), however, does not indicate a s  clearly what 

modulation frequencies the PLL will demodulate. Indeed, it is misleading, 

since the I1hurnpl1 in that response might lead one to  believe that the loop is 

tracking, while in  fact, though it does track, the phase e r r o r  i s  so large 

that appreciable harmonic and intermodulation distortion will result. 

The ordinary input-output 

Fo r  the above reasons, in this dissertation, the phase e r r o r  response, 

rather than the input-output response of PLL1 s is used in comparing and 

evaluating their  "bandwidth1 . 

1.4.7 Computing Threshold from Expected Number of Spikes per Second 

The FM demodulator (FM discriminator, o r  PLL) produces, at a 

given input carrier-to-noise ratio, an average of N spikes per  second. 

output signal to noise ratio, can be expressed a s  a function of N, and the 

threshold calculated, To maximize the output signal-to-noise ratio, a 

low-pass ideal filter of bandwidth f mHZ i s  placed at the output of the FM 

demodulator. 

The 

If the modulating phase is m 

The output noise power due to the smooth (FM type) noise is 

sin umt, the output signal is Po cos 

1 .6  o t. m 
(for a c a r r i e r  amplitude of unity) 



2 fm 
P N =  ,f w Sx ( ~ ) d f  (1.4.29) 

-fm 

S 

(watts per Hz) .  

(a ) i s  the spectral  density of the quadrature low pass equivalent noise. 

For  the examples used in  this dissertation, this density i s  

X 

7 

4crG 
T 
(w 4-1 

s (w)= 
X 

2 where IT 

Thus 1.4.29 becomes 

i s  the variance of the quadrature noise. 

2 w 

'cr [ a r c t a n w  - " I  2 - 
m 1 t d m  

pN - 7 

(1. 4. 30)  

(1. 4. 31) 

It i s  shown in Appendix B that if symmetrical Poisson distributed spikes 

(delta functions) of area ZIT drive an ideal low pass filter of bandwidthw 

Hz, the resulting output noise power is: 

m 

Ps =   IT N w m  (1. 4. 32) 

where N is the average number of spikes per  second. 

signal power i s  w 

Since the output 

6' / 2 ,  the output signal-to-noise ratio is: m 

2 2  P I 2  m 
SNR = -3 (1.4.33) 

L w 
] t 4 ~ r  Num m - 

2 2 u  r a r c t a n w  - 
Tr m 1 t o m  

Since the amplitude of the ca r r i e r  is taken to be unity, the carrier-to-noise 

2 ratio is CNR = 1/2cr , also note that f rom Eq. 1.4.  30 the 3db IF bandwidth 

is ( p t  l ) w m  = J f l  -1 . Thus Eq. 1 .4 .33 may be written 

-17- 



SNR 

T ( n - 1 ) 0 2  CNR 

When /3 is greater than unity, which represents the majority of practical  

systems, w <<1, the m 

- . 2  3 - -  1 
1 3 

m 

a r c  tan w m  - 
+ - - I  w 

and the output SNR becomes 

3.rr P 2  ( @ l ) C N R  
4 (e-1 SNR = 

(1. 4.35) 

(1. 4.36) 

The numerators in Eqs. 1.4.35 and 1.4. 36 represent the output signal-to- 

noise ratio for high input carrier-to-noise ratios. Note, also that the SNR 

is a linear function of CNR for a given p, so long a s  the denominator is 

nearly 1. 

Threshold is defined as  the CNR occurring when the SNR has decreased 

below this linear relationship by 1 db. This is equivalent to the denominator 

being 1.25. Thus the threshold CNR i s  

-1 8- 



1 

CNRTH = ( 1. 4 . 3 7 )  

16rr ‘ N E  

F rom Eq. 1.4.  37, we can see that i f  we have plotted N as  a function of 

CNR, f o r  a particular /3 (modulation index), the threshold occurs when the 

N curve intersects the hyperbola defined by Eq. 1.4.  37 .  
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CHAPTER 2 

THE MOST LIKELY NOISE MODEL 

2. 1 Bandpass Noise Representation 

If a bandpass filter is driven by white Gaussian noise, its output can 

be represented by (see appendix A)  

z (t) = x (t) cos w0 t - y (t) sin w t ( 2 . 1 . 1 )  
0 

It is shown in appendix A that if  the bandpass filter is symmetric about o0, 

then x(t)  and y(t) a r e  independent low pass Gaussian noises. It is also shown 

that i f  S z ( w )  i s  the noise spectrum of the bandpass filter then 

W )  = S ( w )  = Sz ( w - w o ) t S ( w t ~ O )  when 1w 1<o0= 0 
sx( Y z (2. 1 . 2 )  

= o  when l w l b o o  
Thus the properties of x(t) and y(t)  a r e  derived by driving the low pass 

equivalent of the symmetric bandpass filter with white noise. 

The examples used in the computer simulation portion of this 

dissertationuse an IF f i l ter  consisting of a cascade of two identical single-tuned stages 

each having a 3 db bandwidth of t 1 radian per  second. Such a filter i s  a - 
symmetric bandpass filter only in  the limit a s  its centre frequency increases  

without bound (while of course maintaining the same bandwidth). (Since 

experimentally, an infinite centre frequency is impossible, the assumption 

of symmetry introduces some e r ro r ) .  

pass equivalent of such a filter is 

The Fourier transform of the low 

f rom which the spectral  densities of x(t), and y(t) a r e  

(2. 1. 3)  

(2. 1.4) 



where u 2  is  the variance of x(t) and y(t). 

forms, we find their autocorrelation to be 

Taking inverse Fourr ier  t rans-  

Rx (t) = Ry (t) = R(t )  = u 2 (1 4- 1tl )e  -It1 

( 2 . 1 )  2. 2 Noise Models 

We need to evaluate the conditional expectations 

(2. 1 . 5 )  

(2. 2. l a )  

(2. 2. l b )  

To do this we need the conditional density function 

f(x(t), d o ) ,  W O ) )  

f(x(0 ),2i (0  1) 
f(x(t)/x(O),f ( 0 ) )  = (2.2.  2)  

This may be computed by using the standard form of a joint Gaussian density 

function 

where the elements of matrix C a r e  c = E [ xi x.]. 
i j  J 

Using the autocorrelation function, defined by Eq. (2. 1. 5)  we find 

E [ ~ ( t ) ~ ]  = E [ x ( 3 )  2 ] = u 2 

E [x(t) x(O)] = R(t)  = u 2 (1 t It l)  e -It1 

E [x(t) x ( O ) ] =  -R(t) = u 2 t 

E [x(C) x(O)] = -R(O) = 0 

E [ ~ ( g )  ] 2 2 -R('I) = 0- 

Thus, f r o m  Eqs. (2. 2.2), (2. 2.3) and (2. 2. 4) 

(2. 2.3) 

(2. 2.4) 
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Since x(t) and y(t) have identical statistics, the conditional density for y(t) 

has exactly the same form a s  Eq. (2. 2.5). 

The noise model fo r  the quadrature noise x(t) is evident from Eq. 

(2 .2 .5) ,  

X l ( t )  = ( -y x (9) - - R(t) x ( 0 )  1 2 
0- 0- 

(2 .2 .  6 )  

Since t = O  i s  chosen to be the t ime when x(0) = 0, (equivalent to the time 

when a trajectory of x ( t ) ,  y(t) c rosses  the y(t) axis) Eq. ( 2 . 2 . 6 )  becomes 

x,(t) = X ( 0 )  t e - I t !  

Y p  =[y(0)(1 + I )  4- jr(0)tI e -It1 

(2.2.7) 

Similarly the model for y(t), the in phase noise, i s  

(2 .2 .8 )  

A trajectory of these noise models is shown in Fig .  2. 1. 

t = O  this trajectory c rosses  the y( t )  axis, i. e. x(0) = 0 .  

A trajectory of these noise models is shown in  Fig. 2. 1. 

t = O  this trajectory c rosses  the y(t) axis, i. e. x(0) = 0 .  

Notice that a t  

Notice that a t  

2 . 3  Variance of the Conditional Noise about the Noise Models 

The variance of the Gaussian density of Eq. (2. 2 .5)  i s  a measure of 

how good the noise models of section 2 .2  are. This variance is: 

(2.2. 9) 

The square root of the above variance is used as a bound in Fig. 2 .1  

indicating the likely variation of the noise (conditioned on x (0); y(O), y(0) =0)  

f rom the noise model. 2 In Fig. 2. 1, 0- = 1/- corresponding to a CNR =1/20 
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of 4 (6db). 

verge more closely to the noise models. 

better and better with increasing CNR' s. Note that a t  this value of CNR, 

which is a typical threshold value (see Sec. 6. 2)  the variance is 0 a t  t = O ,  

Higher Carr ie r  to  Noise Ratios will cause the bounds to con- 

Thus the noise model becomes 

2 2 a t  It1 = 1 and u 0.  930 a t  It1 - infinity. 
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CHAPTER 3 

COMPUTER PROGRAMMING OF THE PLL USING 
MOST LIKELY NOISE (MLN) 

3.  1 General Description 

The low-pass equivalent noises x(t), (quadrature noise) and y(t), (in 

phase noise) which appear in differential equations of the PLL, a r e  replaced 

by the most-likely noise models (MLN) developed in Chapter 2. Thus, the 

differential equations a r e  deterministic, with the random parameters  f (0), 

Y(0)Y and 9 (0). 

Given the above, the computer program achieves the following: 

a )  It solves the differential equations of the PLL, over a specified 

interval of time, (I mean, of course, time as  the argument of the solution, 

not as  the actual t i m e  of computation, ) and for values of the parameters  

k (0), y40), 9 (0)  specified by par t  (b) of the program. The time interval 

must be such that the initial time is a sufficiently negative time so that the 

noise models a r e  near zero, and the final time is a sufficiently positive 

time so that the solution has reached a steady state value. 

considered, -5 to + 25 seconds was an adequate time interval. 

F o r  the examples 

b) It performs a hunting procedure on the parameters  x (0), y(O), $(O) to 

determine regions in the space of 2 (0), y(0) and v (0), such that the steady 

state e r r o r  phase (the steady state solution obtained in par t  (a) minus the 

modulating phase) i s  + 2rr o r  -  IT . The program prints out values of x (0), 

y(O), and 9 (0) on the boundaries of such regions. 

These boundaries or  spike surfaces may be plotted using the output 

of the above program. They can be used to estimate the expected number 

of spikes of the PLL. 

of this chapter, is used to perform the three dimensional integration 

A second computer program, described a t  the end 



required to determine the expected number of spikes. 

3. 2 Program to Solve PLL Differential Equations 

(Part (a) of Program) 

The differential equation describing the PLL is written a s  a first 

order differential vector equation. 

( 3 . 2 .  1 )  d - dt El - = ,F (z, t, 2i (01, Y(O), Y (0)) 

The function on the right of Eq. 3.  2. 1 also contains parameters  defining 

the PLL gain and filter, however, for simplicity, these a r e  not explicitly 

shown here. A s  an example, the differential equation describing the second 

order PLL may be written (Eq. 1.4.6) a s  

@ 

a, 
9[(2y@ + 2 1  + G i x )  cos ++(-2x4e+ 2 9 + G 2 y )  s in  @ 

. .  
-(@ -Qm ) cos (Qj -4e ) -GZsin (@-%)] 

m 

( 3 . 2 .  2 )  

A flow chart  for Part (a) of the Computer Program is shown in Fig. 

3 . 2 . 1 .  

Block 1 sets the initial constants. For  simplicity, only those constants 

The use of the Constants EF1, used in the Flow Chart have been included. 

EF2 and DT will become evident la ter  in the Flow Chart. 

In block 2, a fourth order Runge-Kutta procedure is used to obtain the 

T I  + DT, T1 + ZDT, T1 + 3DT seconds. values of the solution at T 

particular Runge-Kutta procedure used3' 

The 1" 
is as  follows; 

Referring to the differential Eq. 3. 2. I, let Z be the initial value of 

the solution, at t ime T. 

Evaluate the constants 

-1 

-1 E = -- F(Z1' TI,  2 (01, Y(O), 9 (0)) 

E -a - = F(Z1 +El* (. 5*DT), T I  + .5*DT, &(O), y(O), +(O) ) 
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Flow Chart oC P a r t  (a) of Comouter Program 

FIG. 3.2.1 
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-b E = -_  F(Z1  + E& :% (. 5*DT), T1 + .5:%DT, A(O), y(O), S(0) ) 

E = F(Z1  + E *DT, T1 + DT, 2(0), y(O),  p(0) ) -c -- -b 

Then the value of the solution a t  T = T1+ DT is 

Z -2 - -1 -a -b --c 
= Z1 + DTa(E 4- 2:gE + 2*E + E ) / 6  (3. 2.3) 

The above is repeated three times until values of the solution up to the 

time T f 3DT seconds have been obtained. In block 3, a fourth-order 

Moulton's Predictor Corrector procedure is used to compute the value of 

1 

the solution DT seconds later,  i. e. a t  T1 + 4DT. 

i s  as  follows: 

The Moulton' s procedure 

3 . 1  

We have the solutions Z Z Z Z f rom the Runge-Kutta procedure. -1' -2' -3' 4 

Compute 

E = F (3, T4Y 2(0), Y(OL W) 1 (3.2.4) -4 - 
where T4 = T1 + 3DT 

We make a "prediction" of the next value of the solution: 

(3 .2 .5)  

T5 = T 4 +  DT 

The prime on El serves  as a reminder that the "predicted" value V of the 

solution at  T is used, rather than the final "corrected" value. This final 

"corrected" value is: 

-5 - 
5 

Z -5 4 - 4 
= Z f DT*(9*Et5 + 19*E - 5*g3 f g 2 ) / 2 4  (3. 2 .6 )  

If four values of the solution a r e  known, and equi-spaced in time, then the 

above procedure can be used to find a new value of the solution one step 

further out in time. 

We now proceed to block 4 in the Flow Chart. The difference between 

the predicted value of the solution (Eq. 3. 2 .5)  and the corrected one (Eq. 3 .2 .6)  
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gives a measure of the e r r o r  of truncation committed by the 

e r r o r  measure is used to adjust the interval of computation, 

e r ror -measure  is taken to be (in order  to  give a measure of 

I ER = I Zln 

V' - 2; 

process. This 

DT. The 

the relative e r r o r )  

(3.2.71 

where the primes a r e  to indicate that the first component of the vectors 

V and Z a r e  used. 

in the PLL. 

changed fo r  Z '  

The f i r s t  component of Z i s  the phase of the VCO 

i s  small.Eq. 3 .  2. 7 is 

- -n - 
To avoid dividing by zero when ZI 

n 
less t h a n .  25, to n 

fv' - ZfJ 
ER = (3.2.8)  

This e r r o r  measure, has to  be used to control the integration interval, 

DT, but at the same time, take into account, a number of problems that can 

ar ise .  

1) Since the noise models contain e - l t l ,  some of the derivatives of 

the PLL solution will be discontinuous at t = 0. Therefore Moulton's 

Predictor-Corrector procedure, cannot be used to find a value of the solution 

at  t >O based on four values of the solution prior to t = 0. 

To avoid this difficulty, the solution is restar ted at t = O  by the Runge- 

Kutta procedure (which does not require previous values of the solution, 

but only an initial value at  t= 0).  

block 2 is provided when T = 0; T 

initial time f rom which the Runge-Kutta procedure begins. 

The initial value of the integration interval DT, is so  chosen, that 

Note that an exit on M from block 4 to 

is set  equal to zero, since T is the 1 1 

an integer number of computation steps will bring the solution exactly to 

t = O .  When the e r r o r  measure i s  so small  (ER< EF, in block 4, and we 

exist into block 5b via exist B)  that we wish to double the value of DT and 

- 

save computer time, we nevertheless avoid doubling DT if the number of 

computation steps needed to extend the solution to t = O  is not even. To do so 

- 
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would cause the program to neglect to evaluate the solution at  t = O .  

block 6c does not allow an exit on H to block 7, where doubling of DT takes 

place, unless the number of steps required to extend the solution to t = 0 

is even. 

Thus, 

2) The e r r o r  measure ER, computed in block 4, fluctuates in a 

random manner about some mean value. 

in deciding when the e r r o r  is small  enough so that DT can be doubled, 

saving computer time, without increasing the e r ro r  too much. 

is solved by averaging the values of ER from the last  three values of the 

solution,in block 5b. We consider doubling DT (exit on E to block 6c) when 

this sum i s  l ess  than E F  

This presents a minor problem 

This problem 

a number chosen by t r i a l  and e r r o r .  

3 )  It is not convenient to double DT until at least  7 values of the 

2' 

solution have been obtained, because to do so would require restart ing with 

Runge-Kutta' s procedure. Thus, block 6c, prevents doubling DT (exit on 

H to block 7 )  i f  this condition is not satisfied. 

4) It may happen, that when DT is doubled, and Moulton' s procedure 

applied, the e r r o r  i s  too large. 

justified in doubling DT, o r  that E F  is too large. Thus, block 7, when it 

meets this problem, exits on I to block 8, where EF 

(so that the program is more conservative in deciding to  doube DT in the 

future) and DT is halved to i ts  original value. 

double DT i s  given up. 

This would imply that we were not really 

2 

is reduced by 0. 75 2 

In short, the attempt to 

Notice that a successful doubling of DT in block 7 causes an exit a t  J 

to the regular Moulton's procedure (block 3) .  

zero, we exit block 7 a t  N, to  res ta r t  the solution with the Runge Kutta 

Method. 

5)  If the e r r o r  measure ER is too great (ER > E F  ) we must reduce 

Notice also, that i f  t becomes 

1 



DT, the integration interval. 

However, if the Moulton' s Predictor -Corrector procedure had only computed 

Thus we exit block 4 at  exit A into block 5a. 

one value beyond the four solution values presented to  it by the Runge-Kutta 

starting procedure, then too large an e r r o r  implies that DT was too large 

for  both procedures. Thus, i f  this is the case, we exit block 5a at  C, 

halve DT, and s ta r t  al l  over again with the Runge-Kutta procedure. 

- 

However, if the Moulton' s Predictor-Corrector procedure had 

computed more than one value beyond the four Runge-Kutta values of the 

solution than too large an e r r o r  indicates that only the las t  Moulton's 

value of the solution has too large an e r r o r .  Thus we exit block 5a at  D, 

and se t  T I  (the time at which the Runge-Kutta method will begin computing) 

equal to the time of the second to the last  value of the solution supplied by 

Moulton's procedure. We then halve DT as  before and go to the Runge- 

Kutta procedure (block 2 )  and s t a r t  the solution at  the new values of T, 

and DT. 

If a change in DT i s  not being made, (or considered) then the program, 

after being started by the Runge-Kutta procedure, cycles around blocks 

3, 4, 5b and 6d, in the order  just listed. Each cycle, provides a new 

value of the solution, advanced in time by DT. When the solution has been 

extended beyond t = 25 seconds, block 6d is exited a t  K and the value of the 

solution at  this final time is presented to P a r t  (b) of the program, block 3. 

This par t  of the program will be described in the next section. Here, it 

should be noted that during the hunting procedure on x (0), y(O), and y (0), 

new values of x (0), y(O), and 9 (0) a r e  injected via exit Q into the program. 

The program of Part (a) repeats itself, f rom the beginning, with the new 

values of the parameters  x ( O ) ,  y(O), y ( O ) ,  as often as P a r t  (b) of the 

program presents them. 



F I G .  3.3.1 

Flow Chart of Part (b) o f  the Computer Program 



3 . 3  Program to find Spike Regions (Part  (b) of Program)  

A Flow Chart of P a r t  (b) of the Computer Program, which enables 

us to locate the spike regions, is given in Fig. 3 . 3 .  1 .  This Chart shows 

how the Computer Program finds regions in x (0), y(O), 9 (0) space where 

the Steady State Phase E r r o r  (SSPE) is -2rr. 

regions for i-  IT, it is only necessary to change the sign of the modulation 

in the PLL differential equation, (a (t) --@ (t) ); and when the program 

has printed out the points, ri. 

the surface of the spike region, take these points to be - 2  (0), yij(o), 

and y.  (0). 
J 

that the region (or regions) for t 2rr spikes i s  simply a m i r r o r  image of 

those for -2rr spikes, below the y(O),  q ( 0 )  plane. 

If it is desired to find the 

m m 

(0), yij (0) and y . ( O ) , ( i , j =  1, . . 7 )  defining 
i j  J 

i j  

For the no modulation case, this is equivalent to pointing out 

To prove the above, consider that any PLL can be described by the 

equation 

CP = h(t)  @[-sin( 4-+ ) t x cos + t y s in  +] ( 3 . 3 . 1 )  m 
where h(t) is the impulse response of the PLL filter 

8 denotes convolution. 

other te rms  defined in Sec. 1. 4 

If Q, (t) gives a positive spike at  t k O ,  then -@(t) gives a negative one. 

@(t) is changed to -@(t) and Qm(t) to -dPm(t) in Eq. 3. 3. 1 then 

If 

I+ = h(t) 8 [ -sin (4-+ ) -x cos + t y s in  $1 ( 3 . 3 . 2 )  m 
Since x(t) is modeled in the program a s  % ( O )  t e - l t l ,  Eq. 3. 3. 2 is the same 

a s  Eq. 3 . 3 .  1 when x(0)  - -2 (0). 

In the first block of the Flow Chart, our initial t r i a l  value for x . .(O), 
1J 

yij(0) and q . ( O )  is inserted into P a r t  (a) of the Program. 

i and j (used to enumerate the points to be determined on the spike boundary 

in 2 (0), y(O), y(0) space) are both se t  equal to unity, and the variables 

The subscripts, J 



8 , VK, and AVK a re  given the numerical values shown. 

three variables (and their definition) will become evident la ter  in the 

Program. 

The use of these h 

Block 2, comprises P a r t  (a) of the Program described in the previous 

section. It supplies a steady-state value of the solution of the P L L  differen- 

tial equations to block 3, which then computes the Steady-State Phase -Er ro r  

(SSPE) by subtracting the modulation phase f rom the solution. 

In block 4, we determine whether or  not this SSPE is less  than -T 

(indicating a negative phase e r r o r  jump) or  not. 

If the SSPE is less  than -n we enter block 5b via B. 

since i las t  changed its value, we halve the 

If the SSPE has 

ever been greater than -n 

hunting interval AVK, otherwise we double it. In other words, i f  we have 

crossed the -2n spike surface at  least  once during the hunting process to 

find the point x (0), yij(0), fj(0) on the -2n spike surface, we halve the 

hunting interval AVK, otherwise we double it. This increases the hunting 

efficiency, VK is the net amount the hunting procedure has taken us f rom 

the t r ia l  value of 2 . . ( 0 ) ,  y. .(O), y . (O).  AVK is the hunting step, i. e . ,  the 

distance we move f rom f 

process.  

i n  this block. 

i j  

1J 13 J 

1' 
In many steps AVK sum to VM. 

(0), yl, (0), 9, (0) in one step of the hunting 

VK is replaced by VK-AVK 

If we had entered block 5a via A (because there was no negative phase 

jump in SSPE), it is again determined whether o r  not we have crossed the 

-2n spike surface at  least  once during the hunting process  to find x 

yij(0), 

In this block we increase VK by AVK. 

(0), i j  

(0) on the spike boundary. I€ so, halve AVK, if not, double it. 

F rom either block 5a o r  5b, we next enter block 6. The first line of 

this block can be discussed better when discussing block 11. I€ this first 
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line does not result  in  an exit on C, we change the values of x . . ( O ) ,  and 

y. .(O) a s  indicated by the two equations * in the block. 

point labeled r ' llt  is the old value of k..(O), y..(O), (y.40) does not change 

during the hunting process)  we hunt along the line with inclination Oh, by 

amount VK. The point ' t 2 r t  would be the new value of x .  . (O) ,  y. .(O). 

is not l e s s  than . 01 (which does not occur until the hunting procedure for  

this point is complete) we exit on E to  block 7b, where the new value of 

i. .(O), yij(0), y j (0 )  a r e  inserted into block 2 via F. 

again f rom there. 

1J 

In Fig. 3. 3 .  2, if the 
1J 

13 1J J 

If AVK 
1J 13 

The process repeats 
1J 

The consecutive and cyclical operation of blocks 2, 3, 4, 5a or  5b, 6, 

and 7b, perform the core of the hunting procedure. F o r  clarity, we shall 

discuss a typical example with the aid of Fig. 3. 3 .2 .  Three points on the 

spike boundary a r e  shown. This boundary is indicated by the curved line, 

and spikes of area-ZIT occur for values of the parameters,  i ( O ) ,  y(O), 

+ ( O )  to the right. 

2, 4(0), y2, 4(0), y4(0), along the line with slope 8 for the point x 

the initial t r ia l  value is the point labeled trllt .  

2 an 3, we find that SSPE is nearly zero, (no spike is generated since we 

a r e  to the left of the spike boundary) and therefore block 4 resul ts  in 

entering block 5a, Since SSPE has never been l e s s  than -IT since i las t  

changed its value (from 1 to 2 since the previous point hunted was x 

(0), yl, 4(0), y4(0) ) we double AVK to .5 ,  increase VK by AVK, and enter 

Suppose that the program is in the process of hunting 

and 

After completing blocks 

h' 

1, 4 

block 6. Since i is l e s s  than 3 and VK is not greater than . 5, we do not - - 

*Equations,in computer programs, of the form A=A+B mean that the value 

of A is changed to its previous value plus B. 
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FIG. 3.3.2 SKETCH DEMONSTRATING HUNTING PROCEEDURE 



2,4(O)9 exit on C, but execute the two equations, making the new values of i 

(0), )i4(0) correspond to point "211 on Fig. 3. 3.  2. Since AVK is not y2, 4 

l e s s  than . 01, we exit on E, and inser t  these new values of k 

jr4(0) into block 2 via F. 

doubling AVK to 1 and increasing VK by AVK in block 5a. 

the values of x 

The next time we go through this loop, we enter block 5b (since SSPE i s  

now about - 2 ~  o r  less  than -IT) .  

(SSPE was greater than -IT at  points "1" and 'l2"), we halve AVK to . 5, 

decrease VK by AVK, and block 6 takes us to point "4". Each time we go 

through the above loop, we will "hopll back and forth by AVK, halving AVK 

(0), y2, 4(0), 2, 4 
We go through the same blocks (2, 3, 4, 5a, 6, 7b), 

Block 6 makes 

(0), y2, 4(0), y4(0) corresponding to  point "3" in Fig. 3.  3.  2. 
2, 4 

Since we have crossed the spike boundary, 

each time, until AVK i s  less  than . 01. 

block 7a. When this happens, x 

actual spike boundary, 

Block 7a, writes out the values of the co-ordinates of this point, or ,  

in general, the 2. .(O), y. .(O), y . ( O )  supplied by the completion of the above 

hunting procedure. 

We then exit block 6 a t  D, and enter 

(0), y2, 4(0), y4(0) is within . 01 of the 
2, 4 

1J 1J J 

The purpose of the r e s t  of the program(except block 10) is to use 

points previously found by the hunting procedure, to estimate a better 

trial value for the subsequent point to be hunted. 

Block 8, (for a reason which will become evident la ter)  s t ee r s  the 

progress of the program through exits G,H, I, o r  J depending on whether 

i = 1, o r  2, o r  3 i < 9, o r  i=  9 respectively. It also exits a t  J if either 

x 

- 
(0) o r  y..(O) is greater than 6. 

i j  1J 

If i=l ,  we enter block 9a through G. Here the test value for the new 

point to be hunted, x 

yj(0) (* j(0) not changed). 

.(O), y .(O), y j(0), is taken to be x (0) - . 5, yl, * (0 1, 2, J 2, J 1, j 
Since only one point has been found by the hunting 
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procedure, increasing d (0) by . 5  and not changing y(0) is about the best  new 

trial value to  take. 

and AVK = . 2 5  in preparation for a new hunting procedure. 

the new t r ia l  value from block 7b goes, via Exit F, into block 2, and a new 

hunting procedure begins. 

The subscript i is increased to 2, and we set VK=O, 

Leaving block 9 a, 

Returning to  block 8, i f  i is equal to 2, (which means that two points 

with the same . j . ( O )  have been obtained) we enter block 9 b via exit H. 

a straight line extension is used, as  described in block 9 b, Fig. 3 .  3 .  1, to 

obtain a better estimate for the t r ia l  value, ki+l,  j (0) ,  yitl, j (0) from which 

to start hunting. 

normal to the spike boundary, e 

extension, rotated by a right angle. 

by 1, but AVK is set to 0. 2 instead of 0. 25, since the trial value is better 

Here, 
J 

Since it i s  desired to hunt in a direction approximately 

is set  equal to the slope of this line of h 

VK is set  equal to zero and i incremeited 

(closer to the true final value of x ( O ) ,  Yitl, j(0). qj(0) on the spike itl, j 

boundary). 

value inserted into block 2 via exit F. 

Returning again to block 8, if 3 < i < 9, we exit on I into block 11. 

The program proceeds to block 7 b again and the new trial 

- 
(0), yitl, j (0)  is estimated by using a circular itl, j Here, a t r ia l  value for 2 

extension f rom the previous three points found by the hunting procedure. 

Note that the length of the a r c  of extension is  proportional to the number EX, 

which is specified by the first line in block 6. 

a s  follows. Normally EX is unity. However, i f ,  during the hunting 

process VK becomes greater than 0. 5 while i>3  (the circular extension 

in  block 11 is only used when i >3 ,  but it increases  i by 1 so that i f  i was 

3 it now becomes 4), EX is set equal to 0.5, i decreased by one and the 

program exits block 6 via exit C into block 11 where the t r ia l  value for 

x . (O) ,  yifl, j(0) is recalculated using the smaller value of EX. 

What this first line does is 

- 

i+l, J 
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In other words,if VK becomes large, that indicates that the initial 

trial value is not close to the boundary. 

and a new trial value is  computed using a smaller extension. The program 

is started over again. This procedure saves computer time, since estimat- 

ing trial values via a circular extension (block 11) involves mere  arithmetic, 

while the hunting procedure involves a repetitive ser ies  of solutions, (with 

different parameters)  of a PLL differential equation, over a fixed time 

interval. 

circular a r c  at x 

VK=O, i= i t  1, and AVK=O. 125. (AVK is still smaller than that set by block 

9b, since the circular extension is usually better than a straight line 

extension). 

three points lie on a straight line) we exit block 11 at M and use the straight 

line extension method of block 9b. 

The hunting procedure is abandoned, 

Block 11, finally, sets Oh equal to the slope of a tangent to  the 

It also sets  .(O), yi+l, j(0) rotated by a right angle. itl, J 

Notice that i f  the curvature is very small, (indicating that the 

Finally, if we a r e  in block 8 and i = 9 ,  we exit via exit J into block 10. 

Lf i = 9 ,  this means that we have discovered 9 values &..(O), y..(O), y.(O); 

i= l ,  2 , .  . . 9  on the spike boundary. We usually will enter block 10  f rom 

block 8 with l e s s  than 9 points, because of the statement "Exit J if  lx. . (O) (  

or[yij(0)( 

1J 1J  J 

1 J  
> 6 in block 8" 

The latter statement in block 8, stops the hunting procedure (for a 

particular value of y .  (0)) for values of x. .(O) and for y. .(O) greater than 6 in 
J 1J 1 J  

magnitude, since we a r e  not interested in portions of the spike boundary 

that remote. Note that all  these points share  the same q . ( O )  co-ordinates. 
J 

. Block 10, sets a new value for y.(O) (increasing subscript j by 1) and r e -  
J 

s tar ts  the hunting procedure to find a new se t  of at most 9 points on the 

spike boundary 
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Seven values of ) i . ( O )  a r e  presented to the program, evenly spaced by .8 ,  

starting from - 2 . 4  and continuing to t 2 . 4 .  The program then exits on K 

and stops. A total of at most 63 (9a7 )  points, on the spike boundary a r e  

printed out by the program. 

J 

Less than 63 points a r e  presented, if the 

program has ever exited block 8, due to the las t  statement in the block, 

which i s  usually the case.  

A sample program, using Fortran IV language is presented in Appendix 

6 .  

3. 4 Program to Find the Expected Number of Spikes, Given the "Spike 
Regions" 

The expected number of times that the Gaussian random vector 

X (01, y(O), + ( O )  enters spike regions i s  (from Ricel' 9, see  also Appendix E)  

N = r [x t +,y(f (x=O,k, y, 9 )  dx dydf 
x$ yq S 

(3.4. 1) 

where f ( e y ? )  i s  the joint Gaussian density of x ( O ) ,  2 (0), y(O), (0). N is 
x2 Y)i 

the expected number of t imes the vector i (0), y(O), )i (0) enters the region 

(or regions) S. 

+m 
0 0 

= +m (0) i s  the instantaneous frequency dev;ation (radiansjsec) a t  t = O .  

If S consists of the spike regions, determined by the program 

described in Secs. 3 . 1  and 3.  2, then N is the expected number of spikes 

per second. 

The spike boundary (or boundaries) a r e  plotted (see Secs. 4.2, 4,3, 

4 , 4 )  and approximated by plane segments a s  shown in  F i g .  3. 4. 1 ( the 

shaded portion represents a "vertical" drop o r  cliff). This mode of 

approximation is equivalent to segmenting the spike surface with planes 

parallel  to the x (0), y(0) plane. The shaded portion in  Fig. 3. 4. 1 l ies  

on one of these segmenting planes. A typical plane passes  half way 



between the y.(O) and 9. 

(see Secs. 3 .  1, and 3 .  2).  The spike surface is assumed to be independent 

(0)  supplied by Pa r t s  (a) and (b) of the Program J J<- 1 

of $ (0) on any of these planes (this is equivalent to a "step'' approximation 

along y ( 0 ) ) .  

variation of the y(0) co-ordinate of the spike boundary with x ( 0 ) -  

Then the best straight line approximation i s  used for the 

If spikes of a rea-  2.rr occur for any x (0),  y(O), 9 (0) to the right of the 

spike surface, ( a typical portion of which is approximated by plane segments 

in Fig. 3.4.  1) then to find the expected number of spikes of area - 2 r ,  we 

can evaluate the integral in Eq. 3 .  4. 1 for  the a rea  to the right of each of 

the plane segments, then add these results to get the total expected number 

(3 .  4. 2 )  

of negative spikes. 

F o r  the upper right segment in  Fig. 3 .  4.  1, 

y(0) = A.kI(0) t B 

where D = x  (0) - X . . ( O )  
i t l ,  j 1J 

A = (Yi+l, j(0) - Yij(0) ) / D  

.(O)'Ky. . ( O )  - 9. .(o)::cyitl, ( 0 )  ) / D  B = (git1, 
1J 1J 

Referring to Sec. 2. 2, x(O), 2 (0), y(O), 9 (0) a r e  each independent, 

2 and have the same variance, cr . Thus, their joint density function is  

( 3 . 4 . 3 )  

The integral in Eq. 3 .  4. 1 for this plane segment becomes 

(3. 4. 4)* 

* AY and AT defined in Fig. 3 .  4. 1 3. - 



This integral can be evaluated in closed form. 

time consuming , since x 

thus requiring the absolute value on ri: in the integral to be contended with. 

The interested reader  will find the details in the sample program in Appendix 

D. 

The computation is however, 
J, ?- 

. ( O )  can be positive while 2.. (0) is negative, 
itl, J 1J 

The co-ordinates of the corners  of a l l  the approximating plane seg- 

ments a r e  read into the program in Appendix D. (Eq. 3.4.4) 

that results when the integral is performed, for each i and j is  then computed. 

Adding all  of the N..’ s together, the expected number of spikes per  second, 

is obtained. 

The value for N. 
1j 

1J 

The carrier-to-noise ratio (CNR) is 1 / Z r z  since the c a r r i e r  has a 

magnitude of unity. N is a function of this CNR (Eq. 3.4.4 depends upon 
2 1/2cr ), and the program is made to print out N a s  a function of CNR. 

Flow Chart of this program i s  presented in Fig. 3.4. 2. 

A 

*It took 16 For t ran  statements and 4 Subroutines to express  that integral 

in  the program. 
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FIG.  3.4.2 

Flow Chart t o  Eetimate Ezpeoted Number of spikes per Seoond 

I READ Co-ordinates of oornera of plane segments 1 

I Exit on A 'f 
If j is  greater than J Erit on C D 

If k i r  greater thsn 8 wit on E 
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CHAPTER 4 

COMPUTER RESULTS (SPIKE BOUNDARIES) 

4. 1 FM Discriminator 

The spike boundary for the FM discriminator, with a constant offset 

modulation, is shown in  Fig. 4. 1. 1. It was computed by replacing Part (a) 

of the Program of Sec. 3. 2 with a program which determined the steady 

state value of the arctan (. )term of equation 1. 4. 1, a t  the end of the -5 to 

f 25 second time interval. 

Only the surface for positive J i ( 0 )  is shown, because the surface is 

symmetrical in 9 (0).  It is interesting to note that negative spikes occur 

not only to the right of the surfaces, but also in a separate region to the 

left below the y ( O ) ,  y(0) plane. The fact that no regions for  positive spikes 

a r e  shown does not exclude, entirely, the possibility of their occurrence, 

since there might be a positive spike region in the region S (0) <3. This 

region was not considered, as  the number of spikes contained therein must 

be extremely small. 

If there is no modulation, the spike boundary of the FMD is simply 

Any 2 (0), y(O), 9 (0)  to the right of that plane will resul t  the y(0) = 1 plane. 

in a phase jump. That phase jump is -2rr above the y(O), f(0)plane and 

t 2 ~ r  below it. When Eq. 3.4. 1 i s  applied to  these regions for  the FMD 

without modulation, the standard result  for  expected number of spikes per 

second for FMD due to Rice" 9is obtained. [ (1 /2~r  ) e r f c ( m R ) ] .  

When Eq. 3. 4. 1 (integration using spike boundary to obtain expected 

number of spikes per  second, N) is applied to the spike surfaces in Fig. 4.4. 1, 

for FMD with modulation, we obtain a slightly higher expected number of 

spikes per second, versus  input carrier-to-noise ratio (CNR), than Rice ' s  

result  gives for  FMD with modulation. (See Figs. 5. 4. l a  and 5.4. lb.  ) 
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With a CNR of 10 (10db) RiceL result  for  N is 4. 8 ~ 1 0 - ~  spikes/sec, while 

the most-likely noise gives 6x10 

conclusion to be made here,  is that the results obtained for the FMD, using 

-6 spikes /sec, a negligible difference. The 

the Most-Likely-Noise approach, essentially agree  with those obtained by 

Rice, with o r  without modulation. 

4. 2 F i r s t  Order PLL 

4. 2. 1 F i r s t  Order P L L  Without Modulation 

The spike boundary for the first order  P L L  without modulation is 

The loop had a 3db bandwidth of 5 radiadsecond.  shown in Fig. 4 .2 .1 .  

(The results, in t e rms  of expected number of spikes per second versus CNR, 

are presented in normalized form, in Figs.  5 .4 .  l a  and 5.4.  lb.  They there- 

fore can be employed for  a l l  loop bandwidths, having the same loop band- 

width to IF bandwidth ratio, a s  the loops used in the computer program. ) 

Only the surface for -27r spikes is shown. They occur to the right of the 

curved boundary. 

of the one shown, below the y(O), 9 (0) plane. The boundary was found to 

The boundary for  -2r spikes is simply a m i r r o r  image 

be symmetric in 9 (0), thus the Fig. 4 .2 .  1 shows the boundary only for 

positive 9 (0). 

Loops of higher and lower gain, were also tried. The spike boundaries 

for all  of them had the same shape as  the one in Fig. 4.2. 1, however, The 

boundary hugs the plane y(0) = 1, 2 (O)>O, and the G (0)  = O  plane more closely, 

a s  the gain is increased, thus converging to the spike boundary for  FMD 

without modulation. The reverse  occurs when the gain is reduced, i. e. the 

boundary moves further away, to the right. This indicated, that the loop 

with lower gain has fewer expected number of spikes per  second with a given 

CNR, since the vector 2 (0), y(O), 9 (0) has extend, further f rom the origin 

i n  order  to  enter the spike regions. Indeed, the performance of different 
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PLL'  s can be quickly compared, by comparing this aspect of their spike 

regions. 

in Fig. 5.4. l a  and will be discussed in Chapter 5. 

4. 2. 2 First Oraer PLL with Modulation 

The Expected number of Spikes per second for this loop is plotted 

The spike boundary for the first order PLL with a constant offest 

modulation i s  shown in Fig. 4. 2. 2. 

to that for the FMD with the same modulation (Fig. 4. 1. 1). 

The resulting boundary i s  very similar 

This i s  a s  to 

be expected, since a f i rs t -order  loop with a high gain (5 radians/second 

bandwidth, compared to a t. 643 radians/second IF bandwidth) has a per -  

formance not too different f rom the FMD. A s  was the case for the FMD, 

there are no positive spike regions in Fig. 4. 2. 2. A detailed discussion 

of the expected number of spikes per second, and a comparison with exper- 

imental results i s  presented in Chapter 5. 

4 .3  Second Order PLL 

4. 3. 1 Second Order PLL without Modulation 

Figs. 4. 3. l a  and 4.3.  l b  show the spike boundaries fo r  a second order,  

constant-plus-integral PLL with the phase-error  transfer function cut-off 

frequencies a t  .91 and .56 radians/second respectively. The PLL was 

designed to have a maximally flat phase-error transfer.  In both cases,  

only the spike boundary f o r  spikes of - 2 ~  a rea  a r e  shown since the boundary 

fo r  t 2~ spikes is  a mi r ro r  image, with respect to the y(O), j .  (0) plane. 

Comparing the two surfaces, we can judge that the lower-gain loop 

has fewer spikes per second, given the same CNR, since its spike boundary 

i s  further from the origin. 

It i s  interesting to note, that the spike surface fo r  the loop of gain 91, 

crosses  to the left of the y(0) =1, plane for d (0) >2. For  f (0), y(O), (0)l s 

in this region, we obtain negative spikes f rom the PLL that do. not occur in 
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the FMD. 

phenomenon for  la rge  x (0), when the sur face  in Fig.  4.31b is extended in the 

The spike boundary for  the loop of gain . 56 also i l lustrates  this 

positive f (0) direction. It is conjectured, that the above phenomenon takes  

place when an input phase spike (causing a doublet FMD output) in  the noise 

t ra jectory,  causes  the P L L  to lose  lock and execute a phase jump of 2 ~ .  

4 .3 .2  Second Order  PLL with Modulation 

Figs .  4. 3. 2 show the spike boundaries fo r  the constant-plus-integral 
.I. -4- 

P L L  fo r  a modulation index of 3 and 1 2  respectively. The P L L  used with a 

modulation index of 3 has a phase-er ror  t ransfer  function cut-off frequency 

of . 91 radians/second, while when /3 = 12, the cut-off frequency was . 56 

radians/  second. These two phase -e r ro r  cut-off frequencies were  chosen 

so  that when the higher gain loop (. 91) is driven with a modulation phase of 

3 s in  (w,t), it develops the same  magnitude of phase e r r o r  as the lower 

gain loop (. 56)  does, when it is driven with a modulation phase of 12 sin(w 

(am = [ OIF / 2] / [  /3 tl]) A constant offset modulation of /3wm is used when 

determining the spike boundaries. This is equal to the peak value of f r e -  

t) ,  m 

quency deviation with a s ine wave modulation of modulation index /3. 

The spike surface is of a much s impler  form,  than the one for  the 

FMD o r  f i r s t -order  P L L  with modulation. 

it i t  exists,  is outside the range of view of F igs .  4. 3. 2a o r  4. 3. 2b. 

Any region for  positive spikes,  

Here  again, it is possible to obtain spikes out of the PLL,  that do not 

occur with a FMD. Remember,  that in Fig. 4. 1. 1 fo r  the FMD spike 

boundary with modulation, that there  is a region, inside the lower right 

*The constant offset  modulation used is p w  radians/  sec., where w =Aw / 
(p tl),Aw = w 

m m 

/ 2. The loop gain is adjusted s o  that with a modulation of IF 

/3 s in  (w t)  the amplitude of the phase e r r o r  is . 1. m 
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"humpJ1, below the y(O), 9 (0) plane and slightly to the right of the y(O)=l 

plane, where no spikes occur. This same region, in Figs. 4. 3.  2a and 

4. 3.  2b does indicate negative spikes, especially in the negative ;(O) side 

(remember that the FMD boundary i s  symmetrical in (0 ) ) .  

The expected number of spikes/ second, derived from these surfaces 

is shown in Figs. 5.4. l a  and 5.4. l b  and will be discussed in Chapter 6. 

4.4 Third Order PLL 

4 .4 .1  Third Order PLL without Modulation 

The spike boundaries for two third order constant-plus -integral- 

plus double-integral PLL' s a r e  shown in Figs. 4.4. l a  and 4. 4. lb. The 

PLL' s have a phase-error transfer-function cut-off frequency of . 5 1 2  

radians / sec. and .25 radians/ sec. 

Both spike boundaries have roughly the same shape as  those fo r  the 

other PLL! s ,  however, they a re  further f rom the origin, indicating a 

lower spike generation. 

from the origin than the higher gain one (Fig. 4. 4. l a )  indicating that a 

lower gain loop has l e s s  spikes/ sec. than the higher gain loop. 

4.4.2 

The lower gain loop (Fig. 4. 4. l b )  is further 

Third Order PLL with Modulation 

The Third-order P L L  with a phase e r r o r  transfer-function cut-off 

frequency of .512 radians/ sec. when driven with a modulating phase of 

3 sinwmt developed the same phase e r r o r  magnitude as  the PLL with a 

phase-error transfer function cut-off of . 25 radians/ sec. driven with 

a 1 2  sin o t modulating phase (wm = .5* w / ( P C  1)). Incidentally 

this phase e r r o r  magnitude is about . 1 and is the same as  that for both 

second order PLL' s a s  well. 

m IF 

Figs. 4.4. 2a and 4.4.2b show the spike boundaries for the two third 

order PLL' s with a constant offset modulation of Po,. These surfaces 



a r e  fur ther  f r o m  the origin than the corresponding ones for  the second- 

o rde r  PLL' s. 

( G = .  25 )  is further out than that of the higher gain loop ( G = .  512). 

no regions for positive spikes a r e  shown, 

A l s o  the spike surface of the lower-gain third-order  PLL 

Again, 

-57- 



2 

I 

I 

FOR THIRD 
ORDER 

PLL WITHOUT 
MODULATION 

G =.512 

x (0) i 
- 

\ 2 3 

FIG.4.4.la 

-158- 



3 

2 

I 

SPIKE BOUNDARY 
FOR THIRD ORDER 
PLL WITHOUT 
MOOU LATION 

/ 

6 =.25 



SPIKE BOUNDARY 2 
FOR THIRD ORDER 
PLL WITH MODULATION 

FIG, 4.4.28 

-60- 





CHAPTER 5 

EXPERIMENTAL RESULTS 

5 . 1  General Description of Experimental Set Up 

Fig.  5. 1. 1 is a block diagram of the PLL' s and auxiliary equipment, 

with which the experimental results were obtained. 

A wideband noise generator (General Radio Model 1390-B) having a 

noise spectrum extending from audio frequencies to 5 MHz, drives a wide 

bandpass noise amplifier. (See schematic in Fig. 5 .  1 . 6 ) .  This amplifier 

has a bandwidth of approximately 20 KHz, so that the noise it presents 

to the IF filter is  virtually "white" noise, with respect to the IF filter 

which has a BW=800  Hz. The wideband filter is employed so  that the 

noise can be amplified without limiting. 

The "white" noise then passes through the IF filter, which has a 

Since center frequency of 455 KHz and a 3 db bandwidth o f t  - 400 Hz. 

the IF filter consists of a cascade of two identical stages, each with a 

3 db bandwidth of - + 620 Hz, the noise spectrum i s  shaped to resemble 

the noise spectrum discussed in Chapter 2. 

The carr ier ,  is generated by a (Tektronix type 190A)  Signal Gen- 

erator, and is added to the noise output of the IF filter. The car r ie r  

is not passed through the IF filter as that would result in overloading 

the Filter Amplifiers and hence result in noise limiting. 

o r  Gaussian modulation is employed the modulated car r ie r  must be 

I€ sinusoidal 

passed through the filter. Great care  must be taken to avoid overload. 

An r .  m. s. voltmeter (Ballantine Model 320) is used to measure 

the r. m. s. value of the car r ie r  plus noise. 

(CNR) was measured by: 

The carrier-to-noise- ratio 

(a) Turning off the noise 
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(b) setting the car r ie r  amplitude to a standard value, (270 

mv r .  m. s. ) at  which the loop gain is adjusted. 

(c) Increasing the noise, until the ca r r i e r  plus noise, meas- 

ured on the r. m. s. meter was 

r. m. s. reading = . 27d 1 t 1/ CNR (5. 1. 1, ) 

A s  the highest CNR used in the experimental measurements was about 

7.5,  the above measurement technique was found to be satisfactory. 

5. 1. 1. Operation of PLL 

The car r ie r  plus noise is then supplied to  a balanced phase detector 

(see schematic in Fig. 5. 1. 7), where it i s  multiplied with the square 

wave output of the Voltage Controlled Oscillator (VCO). The multiplier 

has a small capacitance on i ts  output, to remove the second and higher 

harmonics, without appreciably affecting the phase e r r o r  signal. 

This e r r o r  signal is fed to  the PLL filter, which may be any of the 

three filters shown in Fig. 5. 1. 2, depending upon whether the PLL is a 

first ,  second or  third order loop. 

The output of the PLL filter drives the input of the VCO, thus form- 

ing PLL operation. 

pass filter, with a cut-off frequency of 100 Hz. 

filter, is  to attenuate the output Gaussian noise component, accentuating 

the spikes thereby making them easier to identify. 

accentuation results because the Gaussian noise component of the output 

has a parabolic frequency spectrum, while the spikes have a flat spec- 

trum. 

The signal is also supplied to a two-stage RC low 

The purpose of this 

This relative spike 

The spikes a re  displayed on a Storage Oscilloscope (Tektronix Type 

564). The expected number of spikes received a re  determined as follows: 

(a) Set sweep rate at  some low value 
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(1 cm/sec.  - 5 cm/sec.  ) so  that 

during a single sweep, a reason- 

able number of spikes occur. 

For  each sweep compute N/T, 

where N is  the number of spikes 

displayed, T i s  the time taken 

f o r  one complete sweep to  occur. 

(b) 

(c) Repeat until about 50 to 100 spikes 

have been counted, then average 

all the N/T’ s computed for each 

sweep. 

5. 2 Operation of IF filter 

The schematic of the IF filter used, is shown in Fig. 5.  1 .  3 .  

Transistors Q Q , Q , Q , Q , Q 1 ’ 2  3 4 5 6 comprise the first stage. The res t  of 

the transistors a r e  used for the second stage. 

essentially identical to the first, it is sufficient to describe the operation 

of the f i r s t  stage only. 

A s  the second stage is 

Transistor Q is  a simple common emitter, tuned collector amplifier 1 

with an unbypassed emitter res is tor .  

Transistors Q and Q (Q is used a s  a compensating diode) form a 2 4 3  
circuit which presents a voltage stable negative resistance to the tuned 

circuit. 

circuit, permitting narrower bandwidths, than normally attainable. The 

value of this negative resistance is equal to the 5 k R 

plus the 9. 1 k 52 fixed resistor.  

5 6 

6’ 

This negative resistance is used to increase the Q of the tuned 

potentiometer 

Transistor Q and Q provide isolation. A voltage divider is used 

at  the output of Q to reduce the gain, and thus the effect of any magnetic 
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or  other coupling between the two stages. 

The IF fil ter  is adjusted, a s  follows: 

a )  Adjust the first 5 kSL pot. so that the bandwidth of the first stage 

is t 620 Hz. 

b)  Adjust the second 5 k n  pot. so that the total bandwidth is t 400 Hz. 

c )  Throughout the above procedure, maintain both tuned tank-circuits 

- 
- 

centered at 455 KHz. 

5 . 3  Operation of the VCO 

An astable VCO was originally employed. However, because the IF 

bandwidth is so narrow, the drift  and j i t ter  of the astable VCO was not 

tolerable. 

Fig. 5. 1 . 4  shows the schematic of a voltage-controlled Wien Bridge 

The Wien Bridge Oscillator is modified s o  that the r e s i s to r s  Oscillator. 

in the RC network can be varied. 

The operation of this device can be explained by referring to Fig. 

5. 1. 5 as well a s  the schematic of Fig. 5. 1 .4 .  

IT the two resis tances  in  the Wien Bridge oscillator network a r e  

functions of time, the output can easily be shown to be 

(5.3.  1) 

where the constants A and B deoend upon the initial conditions. 

Lf 1 / R ( t )  is  1 / R  t A R )  for  time T1 and is 1 / R  for t ime T2, and T1t 

T 2  = T where T is the period of the output of Eq. (5.3.  l), the resulting 

signal looks as shown i n  Fig. 5. 1. 5c. Part of the signal will be a sine 

wave of frequency w and the other par t  will be a sine wave of frequency w 

The frequency of the signal can be determined f r o m  Eq. 5 .3 .  1, (by averaging over T )  

2' 1' 

1 "1 [ l -  - R t n R  
1 - 

a v -  RC T w (5 .3 .2)  
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Thus the average frequency i s  a linear relation with T1/T. From 

Fig. 5. 1. 5b, it can be seen that this will be a linear relation with the 

control voltage. 

Referring to  the schematic of Fig. 5. 1. 4 we see that transistors Q,, 

Q,, Q,, Q4 (with Q5, Q6 as  a voltage clamp) form the comparator (see 

Fig. 5. 1. 6a). 

the two resistances of the Wien Bridge network. 

Transistors Q 7, Q8 a r e  the switching transistors to  change 

9’ Q1O’ Transistors Q 

all, Q12 comprise the modified Wien Bridge oscillator. 

F. E. T. Q,, acts a s  a gain control of the oscillator to control the 

amplitude of oscillation. 

oscillator output. 

Transistors Q13, Q14 a re  used to amplify the 

Q16, Q17, Q18, and Q19 form an output limiter, which 

results in an output square wave. 

Transistors QZ4 and Qz5 act as  an integrator of the square wave 

output, while QZ6, QZ7 serve as  a high gain emitter follower, and Q,,, 

maintain proper bias on the integrator (preventing it from drifting Q29 

into saturation). 

Transistors Q 2oy a,,, act a s  a differential amplifier, which 

senses the rectified triangular wave output, and controls the amplitude 

of the square wave drive to the integrator (via t ransis tors  Qz2 and Q Z 3 )  

so that the amplitude of the triangular wave does not change with frequency. 

5 .4  Experimental Results for Phase Locked Loops 

5.4. 1 Normalization of Experimental and Theoretical Results 

Experimental and theoretical (Computer -Simulation) results, fo r  

the Expected Number of Spikes per second versus Carrier-to-Noise 

Ratio (CNR), a r e  presented in normalized form in Figs. 5. 4. la  and 

5.4. lb. 

If the differential equation describing the PLL’ s (Eqs. 1 .4 .2 ,  1.4.6, 
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and 1 . 4 . 2 3 )  a r e  t ime scaled by 

t = T ' /A  (5.4. 1) 

where t' is the time used in the computer simulation 

t is the t ime without normalization 

A i s  a normalizing constant 

then the IF bandwidth used in the computer-simulation 

w iF = 2 J X  (5. 4. 2 )  

becomes 

W I F  = XoiF 

Also the PLL constants 

(5.4.3) 

G1 = A G i  (5. 4.4a) 

GZ = A G i  (5. 4. 4b) 

Gg = AG; (5.4.4c) 

o r  if the PLL phase-error  transfer-function, is chosen to be maximally 

flat, and G i  = G ' ! a  Gi = G I G  for the second order  loop, and Gi=ZG' ,  

G i =  G' G; = G' /2 for  the third order  loop then 

G = XG' (5.4.5) 

The expected number of spikes/second, received f rom the time scaled 

PLLI s will be 

N =  AN' (5.4. 6 )  

Thus the Computer and Experimental resul ts  a r e  normalized, by 

considering the PLL gains (or rather,  phase-error  t ransfer  -function cut- 

off frequency, which is proportional to loop gain) to be that given by 

5.4.5, and instead of the expected number of spikes/second, (in the 

scaled PLL) N, N/X = N w  fF / w IF is plotted. 

Eq * 

time 

The noise bandwidth of the low pass equivalent of the IF filter, used in 

the computer program is defined by: 

-74- 



2 
co 

I w I W w  )I2dw 

IH(w ) I 2 &  
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Where H ( w )  is given by Equation 2. 3.  1, and is the low pass  equiv- 

1 
ZIT 

alent 1%’ filter. 

(Remember that the 3 db bandwidth of this low pass  equivalent IF filter is 

This works out to be ( - )  Hz o r  1 radian per  second. 

Jd?-1 Z . 6 4  radians pe r  second). 

Thus the Experimental  and Theoret ical  (Computer) resu l t s  presented 

in Figs .  5 .4 .  l a  and 5 .4 .  l b  can be considered to  be normalized to unit 

(in radians per  second) noise low pass  equivalent IF bandwidth. 

Results for  other IF f i l te rs  (e. g. rectangular)  can best  (but not 

exactly) compared to the authors resul ts ,  by normalizing to unit noise 

bandwidth. F o r  example, experimental  resu l t s  for  the first order  PLL,  

[ (2fl/ B w  ) = 5)] with a rectangular IF bandwidth of 13 KHz, obtained 

by Prof .  D . T .  Hess  (” 

ably well with this authois  resu l t s .  

a r e  shown i n  Fig.  5 .4 .  l a .  They ag ree  reason-  

5 . 4 . 2  Experimental  Results for  the First Order  Phase  Locked Loop 

The experimental  apparatus,  shown i n  the block diagram of Fig. 

5. 1. 2, using the PLL fi l ter  shown i n  Fig.  5. 1. 2a was used to obtain the 

experimental  resu l t s  shown in  Fig. 5. 4. l a  (square points) fo r  the first 

o rde r  PLL.  

The gain of the loop G1, was adjusted by adjusting the potentiometer 

Since the in  Fig.  5. 1. 2a so  that the loop fell  out of lock at t G /ZIT Hz. 

IF bandwidth, was - t 4000 Hz, (the Q mult ipl iers  in  Fig.  5. 1. 3 , giving 

1 - 

the IF f i k t e r  bandwidth o f t  400 Hz, was used for  the second and third - 
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order PLL' s, but not for the first order PLL. ) 

G1 = 51 = 5%(2n 4000 /.643) = 185000 radians/sec. 
(5.4.8) 

where ca'  / 2  = d z l  = .643 or  G1/27r = 31 KHz  IF 

The expected number of spikes/second was measured using the 

procedure described in Sec. 5. 1.1. 

The phase e r r o r  developed by a f i rs t  order loop is almost entirely 

a function of the total deviation ( for p > 1) rather than of the modulating 

frequencies. 

the deviation see Sec. 1. 4. 2 ) .  Thus a f i rs t  order PLL with a relative 

gain of 5 / ( .  643)  is suitable for any modulation index from 3 to infinity. 

This i s  why results for only one value of first order PLL gain a re  pre-  

sented. 

(The first order PLL bandwidth has to be much larger than 

The results for a constant offset modulation of t 4 KHz were obtained - 
by 

a) Measuring the Expected Number of Spikes/Sec. with a car r ie r  

of 459 KHz. 

b) Doing the same at  451 KHz. 

c )  Averaging the two results 

This was done because the results at  459 KHz  were l e s s  than at  451 KHz. 

The reasons for this, a r e  given in  the discussion of results presented 

in Sec. 5.4. 3. 

5.4.3. Experimental Results f o r  the Second Order Constant-plus-Integral 

Phase Locked Loop 

The results for the Second Order Constant-plus-Integral PLL, shown 

in Figs. 5.4. l a  and 5.4. l b  (square dots) were obtained using the appara- 

tus shown in Fig. 5. 1. 1 with the PLL filter shown in 5. 1. 2b. 

Preliminary results were obtained, using a bandwidth of - t 4 KHz.  
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Though the IF filter was carefully tuned to 455 KHz, symmetrical spikes 

were obtained at  456 KHz. The IF filter transfer function was measured 

and found to be asymmetrical. 

quadrature and in phase noises to be correlated. 

this resulted in the spike asymmetry. 

the noise need deviate less  on one side than on the other to produce a 

spike when there i s  asymmetry. 

nearly symrnetrical IF filter. 

improved as the filter Q increased. 

the LF filter circuit (schematic shown in Fig. 5. 1. 3)  and the bandwidth 

was adjusted to be - t 400 Hz. 

This resulted in  x(t) and y(t), the low pass 

It is conjectured that 

A more physical argument is that 

It was decided to construct a more 

To do this, we noted that symmetry 

Thus Q multipliers were added to 

The resulting asymmetry was 20 Hz. 

This asymmetry was measured by measuring the upper and lower 

3 db frequencies of the pass band; the magnitude of the difference between 

the average of these (one half the sum) and the frequency of maximum 

amplitude of filter output, was taken as a measure of the asymmetry. 

Another difficulty encountered, was that there was coupling between 

signals in  the IF filter, and the ca r r i e r  added to the output of that filter 

before being applied to the mixer. 

placing the IF filter circuitry in a shielded container, 1 foot away f rom 

the other circuitry, and by power supply decoupling between these other 

circuits and the IF filter circuit. 

tude of the car r ie r  would vary by approximately 1 or 2 db when its 

This was markedly improved by 

Even with these precautions, the ampli- 

frequency was swept through the IF passband, even though in principle 

it should not have varied at  all since it was added to the noise at  the out- 

put of the IF filter, 

The second order PLL was aligned as  follows: 

(a) The capacitor, of the ser ies  R C  network in the feedback path 

of the OP-AMP shown in Fig. 5. 1. 2b is adjusted so that the R C  
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time constant of that network is  1 / (Gz/2  times the constant A ). 

(Note - the desired PLL filter response is G1(2 t GZ/S)) 

x =  Z I T  400 
. 6 4 3  3900 

Since the resistance of the network is 100 K n ,  (Gz/2 =n G / 2  = G / O ,  

and G =. 91 fo r  /3 = 3, and . 5 6  for /3 = 12) that capacitor has to be; 

(5. 4. 9) 
5 C =\[-Z/ (3900 :% .516  * 10 ) = 7030 pf 

for a /3 of 3 and 12 respectively. 

(b) When the capacitor i s  shorted, (the PLL becomes f i rs t  order 

with gain 2 GI)  the potentiometer shown in the Fig. 5. 1. 2b is 

adjusted to give a lock-in range of 2 G1 = 2 G / O  = G / n  

times the constant A .  This lock-in range (LIR) is: 
2G1 A 

- - (3900) ( *  91) = 399 Hz 
21T a- L m 2 =  27T 

(5.4.  10) 

f o r  a p (modulation index) of 3 and 12 respectively. If the second order 

PLL, is pulled out of lock (on either side) when the capacitor is shorted, 

it will pull back into lock (from either side) when the short is removed 

only (if it is far  enough out of lock), when the offset of the OP-AMP is 

adjusted so  that the net offset of it and the mixer offset i s  near zero. 

This adjustment must be re-made periodically since the offsets of the 

mixer (saturated transistor offset) and the OP-AMP drift in time. If 

this is not done, and the offset becomes an appreciable fraction of the 

phase e r r o r  magnitude the performance of the loop is degraded by an 

increase in spikes. 

5.4. 4 Experimental Results for the Third Order Constant-plus-Integral- 

plus -Double-Integral Phase Locked Loop 
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The results for the third order loop PLL shown in Figs. 5. 4. l a  and 

5 .4 .  lb  (square dots) were obtained using the apparatus shown in Fig. 5. 1. 1 

with the PLL filter shown in Fig. 5. 1. 2c. 

When the loop was first set up, R2  and R were not used (resulting 3 

in a t rue integral and double integral in the filter). 

shorted, and the potentiometer (controlling the gain of the PLL fil ter)  

adjusted to give a lock in range of t G times the constant X .  

2 G, and G = . 512  and . 25 for a /3 (modulation index) of 3 and 12  r e -  

The capacitors were 

Since G = - 1 1 

spectively, the lock in ranges were 

G1x 2* .512  * 3900 = 635 H~ 
2TT 

LIR3 = - = 
2TT 

- GIX 2* . 2 5  * 3900 = 310 HZ 
ZIT LIR3 - - = 2lT 

(5.4.11) 

f o r  a /3 of 3 and 12 respectively. 

The capacitance of the first integrator was adjusted so that the integrator 

had a gain of GZ = G h .  Thus (since the input resistance to the integrator 

was 100 k n  ) 

= .005  p f  1 

3900 *. 512*10 
- 

5 c2 - 

k = .0103 p f  1 
3900 '8 , 2 5  *lo5 

c =  

for a p o f  3 and 12  respectively. 

(5.4. 12)  

Similarly the capacitance of the second integrator was adjusted so 

Thus that the integrator had a gain of G3 = G/2  times the constant A .  

cg = 2 c2 = . O l  rJ.f 

(5.4. 13) 
= 2 C2 = .0206 pf c3 

Alignment tes ts  indicated that the loop was not operating properly. 

The test performed was to offset the loop in each side, so that when both 
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integrating capacitors C and C were shorted, the loop was out of lock, 

and le t  it  pull in when the shorts were removed. 

OP-AMPs the loop pulled in from one side only. 

capacitance was shorted, the loop acted as  a constant-plus.-integral PLL. 

The OP-AMP offset f o r  the first integrator could be adjusted so  that the 

PLL (now acting as  a second order one) would pull into lock f rom an out 

of lock state, from either side. When the short circuit on the second inte- 

grator capacitor was removed, its offset could be adjusted, so that the 

loop would pull into lock, f rom an out of lock state in  both directions. 

However, this situation, could not be maintained, a s  drift in the OP-AMPs 

would (in a few seconds) make the third order PLL be able to pull into 

2 3 
Due to offsets in  the 

When the second integrator 

lock f rom one direction only. 

had areas  of Znr, (n=3, 4, and larger),  and unlike the spikes of area 2r, 

these larger area spikes occurred in one direction only (depending upon 

which way OP-AMPs offsets had drifted). Very soon, the largest  of these 

multiple   IT spikes, would cause the loop to lose lock permanently, and 

the OP-AMP filter would drift off to saturation. 

When noise was applied, some of the spikes 

The fact that, whenever the noise caused the loop to loose lock 

permanently, it always did so in one direction, and that direction of 

permanent loss of lock could be made to be positive or  negative by adjust- 

ing OP-AMP offsets, plus the fact that the third order PLL could be 

made to pull into lock from an unlocked state f rom any direction, for 

only a short time by adjusting the OP-AMP offset voltages, indicates 

that a constant-plus-integral-plus -double-integral PLL may be practical 

only if chopper -stabilized OP-AMPs a re  used in constructing the P L L  

filter, and FET choppers used in  the mixer. 

The system shown in  Fig. 5. 1. 1 did not employ chopper-stabilization 

and could not be maintained in balance for a sufficient length of time to 
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determine the expected number of spikes per second. 

In lieu of chopper-stabilization resistances were placed across  the 

integrating capacitances (Rz and R3 in Fig. 5. 1. 2c). 

and R1 = 100 k , the tendency of the loop to lose lock permanently was 

stopped; Cycle slipping was limited to a single cycle, and the symmetry 

of spikes could be maintained sufficiently long to obtain readings. How- 

ever, this new PLL is not exactly the same third order  PLL used in the 

When R2=200 k 

computer simulation, which used perfect integrators. 

5. 4. 5 Comments on Other Experimental Difficulties 

Three experimental difficulties presented themselves in the second 

and third order PLL measurements. 

The first is that when the car r ie r  generator drifted by as  much as  

50 Hz, this would cause a five-fold increase in  spikes when taking meas- 

urements, without modulation. 

t 400 Hz IF bandwidth was used. 

This was a problem that arose when the 

- 
The second, was that a very slight drift in the output of the noise 

o r  ca r r i e r  generator causes a large change in the number of spikes/ 

sec. generated by the loop. 

The third, is that to measure N near threshold, especially for a p 
-6 of 12, one has to measure about 3900* (5*10 

(About 1 spike per minute). 

quently, this can be very tedious. 

) o r  0. 02 spikes per second. 

Since the apparatus has to be adjusted f re -  

The only cure for these difficulties was found to consist of constantly 

readjusting the frequency of the car r ie r  generator and the output of the 

ca r r i e r  and noise generator. 

The fact that the output amplitude control of the car r ie r  generator 

effected its frequency, further complicated experimental procedure. 
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F r o m  the above discussion it should be c lear  that a P L L  used in the field 

probably will not pe r fo rm a s  well as the measurements  taken he re  indicate. 

5 .4 .  6 Experimental  Procedure with Constant offset Modulation for  

Both the Second and Thi rd  Order  P L L s .  

The constant offest modulation for  both the second and third o rde r  

P L L  was taken to be /3 am, where w 

and negative offset was applied, and resu l t s  averaged. The deviation 

was applied, not to  the center frequency of the IF bandpass filter, but to 

a slightly higher frequency, so  that the spikes obtained for  both positive 

and negative offsets were  approximately equal. This was done, in 

consideration of the following: 

= (aIF / 2)@ +l) .  Both a positive m 

(a) The spikes were  found to increase  with deviation, very 

rapidly . 
(b) If the IF passband were  symmetr ical ,  the amount of spikes/  

sec.  obtained fo r  a deviation positive should be the same as 

f o r  the same deviation i n  a negative (lower frequency) 

direction. 



CHAPTER 6 

COMPARISON O F  EXPERIMENTAL AND 

THEORETICAL RESULTS 

6 . 1  First Order Phase Locked LOOD 

The theoretical (or computer) results (solid line) and the experimental 

results (square dots) for the first order PLL a r e  shown in Fig. 5.4. lb.  

The agreement between theory and experiment is  excellent, both with and 

without modulation, indicating that Schilling' s model of the PLL and the 

technique of "Most Likely Noisellis valid. 

the spikes, obtained from the results i s  

An analytic expression for  

3.  65 -004 . - (1. 1 t 7) CNR 
N = (.066 t - ) e  0 G (6. 1. l a )  

f o r  the no-modulation case, while with modulation the result becomes 

O S 5 O  ) CNR 

The above two eqs. converge to the results for the FMD as  the loop gain 

G tends to  infinity. When G = 5 and the deviationno is . 6  radians/sec.  

Eqs. 6. 1. l a  and 6. 1. l b  correspond to the f i r s t  order PLL results plotted 

(6. 1. lb )  0.525 N = AO (. 159) (1 t 7) e - ( l  t m 

in Fig. 5. 4. l a .  

6 .2 .  Second Order Phase Locked Loop 

Theoretical and experimental results for this PLL a r e  presented in 

Fig. 5 . 4 .  l a  and Fig, 5.4. lb for p' s of 3 and 12 respectively. 

The agreement between theory and experiment for a p of 3 is excellent. 

The threshold predicted by theory and verified by experiment is 5.6,or 7 . 5  

db with modulation. Indeed, the experimental points fall right on top of 

the theoretical curve, f o r  modulation, = 3 (Fig. 5. 4. la) .  With no 

modulation the theoretical threshold is  3.4 o r  5 . 3  db, the corresponding 



experimental result is 3.8 or, 5. 8 db an e r r o r  of . 5  db. 

The agreement between theory and experiment is also excellent for  a 

p of 12, (Fig. 5.4. lb), though not quite a s  good a s  for a p of 3. With 

modulation, the theoretical threshold is 5. 2 (CNR) or  7 .  2 db, while the 

experimental result i s  5. 6 or  7.5 db, a 0. 3 db e r ro r .  

modulation, the theoretical threshold is  3. 1 o r  4. 9 db while the correspond- 

ing experimental result is 4 or  6 db, an e r r o r  of 1. 1 db. 

When there is no 

The results again indicate that the PLL and noise models apply for 

the second order PLL. 

for the second order PLL results shown in Fig. 5.4.  la and 5.4. l b  are: 

The simplest analytic expressions obtainable 

- (1.1 t e 1.04  CNR - .  .0135 N = (.066 t G- 
0 . 3 9 i )  e 

f o r  the no modulation case, while with modulation it is 

102 p 0. 03 -(" 0 ' 2 7 6  G-. 312 ) CNR 
Nm = (' - G - 0 . 7 2 6 )  e 

(6.  2 .  l a )  

(6. 2 .  lb )  

Again these results converge to the results f o r  FMD when G tends to 

infinity. 

6 .3  Third Order Phase Locked Loop 

Theoretical (straight lines) and experimental (square points) results 

fo r  this PLL a re  presented in Figs. 5.4. l a  and 5.4. l b  for p' s of 3 and 

12  respectively. 

A s  mentioned in Sec. 5.4.4, the theoretical results used ideal 

integrators in  the PLL filter, while experimental results were obtained 

with resis tors  placed across  the integrating capacitors. The reasons 

for this were presented in Sec. 5.4.4.  The capacitors have a smaller 

impedance than their parallel res is tors  for frequencies greater than 

160 Hz for the filter for /3 = 3. 

the noise bandwidth (low pass equivalent) is 400 Hz, the PLL fil ters a r e  

For  /3 = 12, this figure is 80 Hz. Since 



not significantly different f r o m  the ideal filter for  most  of the noise spec- 

t rum. 

The agreement between theoretical  and experimental  resu l t s  for  the 

third o rde r  PLL for  a p of 3 (Fig. 5.  4. l a )  is fair. 

old with modulation is 4. 8 o r  6. 8 db. 

7 . 3  db and e r r o r  of 0. 5 db. 

resu l t  is 3 .  05 o r  4 . 7  db while the corresponding experimental  resu l t  is 

3 .  9 o r  5. 9 db an e r r o r  of 1. 2 db. 

is not a l te red  significantly, the resu l t s  indicate no improvement beyond 

that obtained with the second o rde r  PLL. 

The theoretical  thresh-  

The experimental  resul t  is 5. 2 o r  

When there  is no modulation, the theoretical  

Note however, that while the threshold 

The agreement  between theoretical  and experimental  resul ts  for  the 

third order  PLL for  a p of 12, is poor. The theoretical  threshold, with 

modulation is 2. 6 o r  4. 2 db, while the experimental  resul t  (obtained by 

extending a line through the two experimental  points until it c r o s s e s  the 

threshold hyperbola) is 5 . 2  o r  7. 2 db, an  e r r o r  of 3 .0  db. 

tion these figures become 1. 3 o r  1. 1 db theoretical ,  and 4. 2 o r  6. 2 db 

experimental, an e r r o r  of 5. 1 db. 

With no modula- 

Again we see that the second and third order  loop yield comparable 

results. 

The s implest  analytic expressions obtainable for  the third order  PLL 

resu l t s  shown in Figs .  5 .4 .  l a  and 5.4.  l b  are:  

for  the no-modulation case, 

' 7 1  ) CNR ) e  - (l' ' G-. 169 

while with modulation it is  

(6. 3. l a )  

102 p . 0248 ) CNR (6. 3. lb) -('. ' G-. 180 m = P + ( l - , G - . ) e  

The above two Eqs. converge to the FMD resu l t s  when G tends to infinity, 

as is required.  
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6 . 3 .  1 A Look at the Bounds of the Noise  Model 

The bounds on the noise model trajectory of Fig. 2. 1 (square-root of 

conditional variance) become wider with lower car r ie r  to noise ratios 

(since the car r ie r  is fixed at  an amplitude of unity, lower CNR implies 

larger CT , the noise variance), Since these bounds give a measure of 

the expected deviation of the noise f rom the noise model, it is reasonable 

2 

to expect the "Most-Likely-Noise1' method to give less accurate results 

a s  the CNR is  reduced. This expectation is born out, when we note that 

the lower the theoretical threshold of the system, the greater the e r r o r  

between experiment and theory. 
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CHAPTER 7 

CONCLUSION 

7 . 1  Conclusions 

A computer technique has been presented, which, using the ' Most- 

Likely Noise' noise model, can give reasonably accurate prediction of 

threshold in phase locked loops, with and without modulation. 

The technique has the advantages, over previous threshold analysis 

techniques, that, as  long a s  the differential equation of PLL system (or 

FMFB) can be solved on a digital computer, the method remains tractible, 

and the effect of modulation and IF filter characteristics a re  taken into 

account. 

It also provides some qualitative insight to the operation of PLL 

systems, by the inspection and comparison of the "spike boundaries". 

For example, it was indicated in Chapter 4 that the second order PLL 

produced spikes where the FMD did not. 

Computer time, to determine the spike boundary varied from 15 

minutes (first order PLL) to 35 minutes (third order PLL). About 1 

minute of computer time was required to determine the results presented 

in Figs. 5 .4 .  l a  and 5.4.  l b  from these boundaries. Thus computer time 

i s  not excessive. 

7 . 2  Application of Method to Any Deterministic Modulation 

In the computer program, the noise disturbance i s  centered at t=O, 

i. e. al l  input phase jumps or  impulses a r e  delivered to the PLL at o r  

near t = O .  

L€ the modulation Qm(t +ti) is inserted into the PLL differential 

equations and used in the computer technique, the result will give the 

expected number of spikes/sec. a s  a function of CNR given that when 
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they occur, they occur at $,(ti). 

A probability density function for  the modulation $ (t) can be deter- m 

mined by looking at  fdm(t) with a window of height x and width dx, and 

averaging the time $,(t) spends passing through the window: Call that 

time T(x), the density function can be taken to be: 

fd (x) = M lim [ T I  T (XI 
A x  - 0 

where 

1 = / " f a  (x) dx 

,so 

(7.2. 1) 

(7.2. 2) 

T i s  the total time over which 

T(x) is determined. 

If a number of computer results fo r  expected spikes per second (Ni) 

(t.), i =-  ,, a re  obtained for a selection of jd 

spaced closely enough so  that the highest frequency component of 

$ 

to extend over about one cycle of the lowest frequency content of $,(t), 

then the total expected spikes per second can be taken to be: 

n and these fl (t.).are m i  m i  

(t) is taken into account, and there a re  enough ldrn(t) points taken, m 

(7. 2 . 3 )  

where AB i = B m(ti)-$ m(ti-l) 

For  a simple modulation, like a sine wave, N.(spikes per second), 
1 

three points along the sine wave would be adaquate (say a t  0, a / 4, a / Z ) ,  

because of its symmetry. 

7.3 Suggestions for Future Work 

The program of the "Most Likely Noise" computer technique could 



be improved. F i r s t  of all, it could be made more general, so that few 

changes have to be made, when one wishes to analyze a new system. 

The hunting procedure, could be made to find multiple spike regions 

automatic ally. 

Computer time could perhaps be shortened by optimizing various 

parameters of the program, for example the initial hunting step 

The program, with slight modification could be used to evaluate 

signal interference of Phase Locked Loop and FMFB systems. 

main car r ie r  has unit amplitude, suppose there i s  an interferring car r ie r  

offset by A a  from the main carr ier ,  and having an amplitude of A .  The 

program could be made to hunt for regions in the space of flu and A 

I€ the 

where the PLL or  FMFB system does o r  does not lose the main car r ie r  

and lock on to the interferring one. 

The F M F B  is  currently being analyzed using this technique. The 

technique can also be applied to  the MLE where Guida and Schilling 

have shown that spikes of area 2 ~ r  also occur. 
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APPENDIX A 

REPRESENTATION OF BANDPASS NOISE 

Let Z(t) be the random Gaussian process  developed by driving a 

bandpass filter with white Gaussian noise. 

written; 

The following 'can always be 

Z ( t )  =x(t) cos (wet) - y(t)  s in(  m o t )  

x(t) = Z(t) cos ( w o t )  t W(t)  sin (w,t) 
y(t)  = -Z( t )  sin (wet) t W(t )  cos ( W  t) 

(a. 1) 

when x(t) and y(t)  a r e  defined a s  

(a. 2)  

(a. 3 )  0 

W(t)  can be considered arbi t rary.  

The autocorrelations of x(t) and y(t) a r e  

E[x(t 4- ~ ) x ( t ) ] = E ( Z ( t  t T)z(t) C O S  [oo(t 4- T)]  cos (wet) 
t Z(t t -r)W(t) cos [ w o ( t  t ~ ) ]  sin (wet) 

t z ( t ) W ( t t T )  cos (oat) s in  [ w o ( t  t ~ ) ]  

t W(t t T ) W ( t )  sin [ ~ ~ ( t t - r ) ]  s in  (mot ) }  (a. 4) 

E[y( t+~)y ( t ) ]  = E(Z(t tT)Z(t)  cos [wo(t 4- T)] cos (wet) 

-Z( t tT)W(t )  sin [ w 0 ( t t ~ ) ]  cos (mot)  

-Z(t)W(t t T )  sin (w,t) cos [ w o ( t  t ~ ) ]  

t W(t t - r )W( t )  sin [ ~ ~ ( t t - r ) ]  sin( coot)} (a. 5 )  

These autocorrelations become stationary when Z(t) and W(t) a r e  

stationary and 

R Z ( ~ )  = R W (7) (a. 6 )  
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Let the random process W(t )  be generated by driving a filter with 

Z(t); let the Fourier transform of this filter be 

-j;w > 0 

0 ; w  = o  
j ;  w < O  (a. 9 )  I H(w) = - jsgn ( w  ) = 

This is admissible since 1 H(w ) I 2  = 1, satisfying Eq. a.  6, and H(w ) = 

-H*(w ), satisfying Eq. a . 7 .  

The cross  correlation between x(t) and y(t) is 

R (7) = E[x(t+~)y(t)]  
XY 

= E  ( - Z ( t t T ) Z ( t )  cos [ w o ( t  t ~ ) ]  sin (w t )  
0 

t z (tt T ) W ( t ) C O  S[ wo ( t t T  )] C 0 S (mot) 

- W(ttT)Z(t)sin [wo(t t~)]s in  (w t )  
0 

t ~(tt~)~(t)sin[~~(tt~)]cos (wet)} (a. 10)  

R (7) = R (r)sinw T t R  ( T )  cos w T (a. 11) XY Z 0 zw 0 

From Eq. a .  11 and the Eqs. 

S ( w )  = SZ(w)H(w) = - S Z ( ~ ) H + ( ~ ) = - S Z w ( w )  (a. 12)  wz 

we get for the spectral density, 

s ( w )  = -  1 c Sz(0 - w 0 )  -Sz(W t w o )  (a. 13) 
XY 2j 

-Sz(w -wo)sgn(w -0 0 )-Sz(w t w  ,)sgn(w t wo)} 

If x(t) and y(t) a r e  uncorrelated (and hence independent since they 

a r e  Gaussian), 

s ( w ) = O  (a. 14) 
XY 

For 1 w I < w o  

1 s 

This implies 

(0) = 0 = - { Sz(w  -wo) -Sz(w to,)) 

Sz(w -mol = Sz(w to,) I w 1 <ao 

XY j 
(a. 15) 

(a. 16) 
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From Eq. a. 13 and a.  14 

s Z (0) =2Sz(2wo) w =w 0 

2 s  Z ( -2wo)=Sz(0)  w = - w  0 

(a. 17) 

(a. 18) 

(a. 1 9 )  Sz(w -W0)'O w < -w 0 

S z ( ~ s O o )  = 0 w > w o  (a. 20)  

If S z ( w  ) is a bandpass spectral density 

SZ(O) =2Sz(2uo)  = 2Sz(-2wo) = o  (a. 21) 

Eqs. a .  16, a.  19, and a. 20 indicate that S ( w  ) i s  a symmetrical bandpass 

spectrum. 

and y(t) to be independent is that the bandpass filter be symmetric. 

Z 

Thus we have proved that the condition for  the process x(t), 

We now turn to the question of what conditions ensure that x(t)  and 

y(t) a r e  low pass random processes. 

spectral densities of x(t)  and y(t) a r e  

From Eqs. a. 8 and a. 12, the 

Sx(w ) = S  (a)= 2 1 { S z ( w  -wo) t S z ( 0  t w o )  (a. 22) 
Y 

-sZ(w -wo)sgn(w -wo) t s Z ( w  bo) sgn ( w  t w  o ) )  

For 1 w 1 < w Eq. a.  22 is 
0 

Sx(w)=S ( w ) = S z ( O  -ao) t S z ( w  t w o )  I 0 1 < w o  

S x ( w )  = s (a) = Sz(w-w0) w < -w 

Y 

F o r  w < - w Eq. a .22  is 
0 

0 Y 

(a. 23)  

(a. 24)  

While for w > w it is 

S x ( w  ) = S  (a) = S ( 0  t w o )  

Thus we see from Eqs. a. 23, a.  24, and a .  25 that any bandpass spectrum 

for S z ( w )  makes x(t) and y(t) lowpass random processes, so long as  w 

i s  in the passband. 

(a. 25) 
Y 

0 
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APPENDIX B 

OUTPUT POWER OF A N  IDEAL LOW PASS FILTER DRIVEN BY 

SYMMETRIC POISSON DISTRIBUTED IMPULSES OF AREA  IT 

Over a time interval T, a s e r i e s  of Symmetric Poisson distributed 

impulses of a rea  2 ~ r  can be represented by 

where n is an integer random variable whose mean is NT which is the 

expected number of impulses occurring in T sec.  

T is the t ime interval over which f ( t )  is observed 

N is  the expected number of impulses per  second 

t. is  a s e t  of independent random variables uniformly distributed 
1 

over the interval 0 to T 

m. is a set of independent random variables which can take on the 
1 

values t1 or  -1 with equal probability. 

The Fourier  Transform of f ( t )  is 
n 

- j w  t. F ( U )  = 2Tr C m.e 1 
L -  1 

i= 1 

When f ( t )  drives an ideal low pass  fi l ter  of bandwidth w the output is m w m 
- j w  t. 

'd o g(t) = mie 

-w m 

The total output power is 

00 

,f G(o ) G ( - w  ) dw 
2 1 

21T 

co 
P = r g(t)  dt = - 

-ca - I jo  

-w m i , k = l  
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P 

- j w (ti-$) f, m m e  i k  = h W m  

i, k = l  

n -jo (ti-tk) = 4 r w  n t 4 r r u m  C m . m e  m i k  
i, k = l  

i / k  

The average power is 

EC PI 
T Ps = l im 

rn 
1-00 

The expectation of the second term on the right of Eq. b. 4 is zero since 

the m. a r e  independent, and have zero means. 
1 



APPENDIX C 

SAMPLE PROGRAM TO FIND SPIKE BOUNDARIES 

(FOR SECOND ORDER PLL)  

DIMENSION E(7), tET(7), U(7), UT(7), T(7), EN(5), ENT(5), UN(5), UNT(5), 

1AC(9), BB(9), ER(3) 

PI = 4. *ATAN (1. ) 

Constants used in Runge-Kutta procedure t S1 = 1 . 1 6 .  

S2 = 1. 13. 

Z1 = 55.124. 

2 2  = -(59. /24. 

23 = 37.124. 

24 = - (9 .  124. ) 

x1 = -24  

X2 = 19.124. 

X3 = 4 5 .  124. 

X4 = 1.124. 

Constants used in Moulton' s Predictor-Corrector 

procedure. 

These constants a r e  here given numerical values, for the I 
E l  = 0. 

E2 = O .  

benefit of the Common statement that follows. They shall I be defined later i n  the program. 

E3 = 0. 

E4 = 0. 

EF1 = 00005 The constants EF1 and EF2 a r e  used in the e r r o r  

EF2 = 000001 1 control technique. 

These constants a r e  here given numerical values, f o r  the 

benefit of the Common statement that follows. They shall c = 0.  



OM1 = 0. 

OM = 0. 

BETA = 0. 

I These constants a r e  here given numerical values, 

for the benefit of the Common statement that follows. 

They shall be defined later in  the program. 

COMMON/ROOT/A, B, Cy G1, G2, OM1, OM, BETA/TOPT/El, EZ,E3,E4 

OM = SQRT(SQRT(2. )-1. ) OM i s  the low pass equivalent IF 

DO 95 IZ = 3, 12, 9 bandwidth, in radians/sec. The 

BETA = IZ "DO" loop to the left, selects 

OM1 = OM/(BETA t 1. ) modulation indeces of 3 and 1 2  in  

succession. 

AI1  = SQRT ( 2 . )  } This value of AI1 makes the loop phase- 

e r r o r  transfer -function, max. flat 

BI1= 10. 
G (loop gain) is given a value 

such that the phase e r r o r  mag- 

nitude is  . 1 (1. /BI1) 

G = OM1*((BI1%kBETA)%<*Z -1. )**. 25) 

G1 = G/AI1 

G2 = G*AI1 

DO 91 MJ = 1 , 7  

PMJ = MJ-4 

C = .8*PMJ 

VDT = 1. 

Ix = 2. 

IP = 0 

SDP = 0. 

C D P  = 1. 

THT = 1. 

The DO loop provides a selec- 

tion of values for C(g(0)). 

VDT and THT a r e  constants used in  the 

circular extension procedure. The 

other constants, a r e  used in the hunt- 

ing procedure, except SDP and CDP 

define the hunting direction. 
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A = 2 . 5  

B = 1. 

VK = 0. 

AC(IK) = A 

BB(1K) = B 

A B  = . 2 5  

I A (g (0)  ) and B (9 (0) ) set  an initial 

t r ia l  point. VK now set  = 0, will be 

the distance the hunting process takes 

us from the t r ia l  point. 

hunting interval. 

A B  is the 

6 IF(ABS(VK1 . GE. . 5  . AND. IK . GE. 4 .AND. ABS(VDT) . GT. . O O O O l )  

1 GO to 79  

The "IFtt statement executes the f i rs t  

line of Block 6 in Fig .  3.  3 .  1. 

A = VKSSDT t AC(IK) 

B = V K W D P C  BB(IK) 

T ( l )  = -5. 

U and UT a r e  the phase and frequency 

of the PLL VCO respectively. 

U ( l )  =-5. *BETA*OMl 

UT(1) = BETA*OMl 

H = . 125 

GO T O  13 

8 T ( l )  = T(N)  

U(1) = U(N) 

UT(1) = UT(N) 

GO T O  13 

H is the differential equation integration 

inter Val. 

10  T ( l )  = T(N+l )  

U(1) = U(Nt1) 
UT(1) = UT(Nt1)  



Statements 1 3  t o  25 oomgutes 
3 values of the solution 
beyond the hitid value. 

13 c m  RT(T(~)) 
DO 25 M = 1, 
P S I - 1  
T(M) 5 P*H + T(l) 

3 

E(M) UT(M) 

m(M) = F(U(M), UT(M)) 

CAU RT(TV~) 
TV1 = T(M) + .5*H 

EB = UT(M) + *5*E!P(M)*H 
EBT = F(U(M) + 05*E(M)*H, EB) 
M: - UT(M) + .5+E3T*H 
E T  p F(U(M) + 05+EB*H, EG) 
m 2  = T(M) + R 
CALL RT(Tv2) 
ED = UT(M) + ECT*H 
EXYT = F(U(I) + EC*H, ED) 
U(M + 1) = U(M) + FI*(Sl*E(M) + S F E B  + SBEC + Sl*ED) 

25 UT(M + 1) = UT(M) + E*(Sl*E*P(M) + S P E B T  + SPECT + Sl*EDT) 

N =  3 
T(4) = T(3) + H 
m(2) = 0, 

m(3) = 00 

; r l H = N + l  
IF(N .E& 7) N N - 1 
E(N) = UT(N) 

Statements 27 to  the end o f  this 

page, oomprise one step o f  the 
Moulton1s Predictor-Corrector 
Procedureo 

- F ( m ) ,  UT(@) 
V .I U(H) + H*(Zl+E(N) + Z-E(N-1) + 23*E(H-2) + Z4*E(N-3)) 
VT = UT(N) + H*(Zl*E!I!(H) + ZPET(N-1) + ZjWET(N-2) + . 
T ( N + l )  = T(N) + H 

a * E T ( N  - 3 ) )  

CALL RT(T(N+~)) 
E(I?+l) = VT 
ET(B+l) = F(V, VT) 
U(N+l) II U(H) + H*(Xl*E(N+l) + X;I+E(N) + X3*E(N-1) + X4*E(N-2)) 
UT(N+l) I UT(N) + H*(Xl*ET(N+l) + XWET(N) + X3*ET(N-1) + X4.*ET(N-2)) 

-101- 



LEVEL 1, MOD 1 MA IN DATE = 68088 06/01/31 

IF(ABS(U(N+l)) .GT. .25) ER(N-3)=ABS((V-U(N+1))/U(N+l)) 
IF (ABS (U(N+1)) .LE. -25) ER(N-3)=ABS(V-U(N+L)) / (. 5-ABS (U(N+1))) 
IF(ER(N-3) .GT. EF1 .AND. N .LT. 5) GO TO 9 

31 IF(ER(N-3) .GT. EF1 .AND. N .GE. 5) GO TO 8 
IF(ABS(T(N+I)) .LT. .oool) GO TO 10 

33 

34 

35 

37 

45 

61 

63 

IF(T(N+1) .GE. VNI) GO TO 67 

IF(MOD(LABS(ITT),2)- .NE. 0 .AND. T(N+l) .LT. 0.) GO TO 45 
IF((ER(1)+ER(2)+ER(3)) .LT. EF2 .AND. N .EQ. 6) GO TO 33 
GO TO 45 
H=H*2. The f i r s t  10 statements  , 
DO 34J=1,4 c o n s t i t u t e  the  e r r o r  con t ro l  
UN (J) =U (J+J- 1) of H, the  i n t e g r a t i o n  i n t e r -  
UNT ( J) =UT ( J+J - 1) V a l .  It a l s o  cont ro ls  the  
EN (J) =E (J+J -1) r e s t a r t i n g  procedure a t  T=O. 
ENT ( J)=ET (J+J-~) 
N=4 
V=UN (4)+H*(Z 1*EN (~)+Z~*EN(~)+Z~~CEN(~)+Z~*EN( 1)) 
VT=UNT (4 ) +H* (Z 1*ENT (4) +Z 2 9; ENT (3) +Z 3 +CENT (2 ) +Z &E NT ( 1 ) ) 
TT=T (7)+H 
CALL RT(TT) The s i x t h  statement cont ro ls  the  
EN (5) =VT 
ENT (5)=F (V , VT) 
UN (5) =UN (4) +H* (XlJtEN (5)+X2"EN (4)+X3*EN (3) +X4:kEN (2 ) ) 
UNT (5) 'UNT (4) +H* (X 12ENT (5)+X2 *ENT (4) +X3*ENT (3)+X4*ENT (2 ) ) 
IF(ABS(UN(5)) .GT. .25) ERRT=ABS((V-UN(5))/UN(5)) 
IF (ABS (UN (5) ) 25) ERRT=ABS (V-UN (5)) / ( .5 -ABS (UN (5) ) ) 
IF(ERRT .GT. EF1) GO TO 37 

ITT=-T(N+~)/H+.~ 

terminat ion of the  s o l u t i o n  a t  
t > 15 sec.  

. LE. 
DO 35J=1,5 
RTT=5 - J 
T(J)=TT-H*RTT 
U (J) =UN (J) 
UT ( J ) =UNT ( J ) 
E ( J) =EN ( J) 
ET(J)=ENT (J) 

ER( 1) =ERRT 
ER(2)=0. 
ER(3)=0. 
GO TO 27 
EF2=EF2*. 75 
N=6 
H=H*. 5 
IF(N .EQ. 6 )  GO TO 61 
GO TO 27 
DO 63L=1,6 

IF(ABS(T(N4-1)) .LT. .oool) GO TO 10 

T ( L) =T (~+1) 
u (L) =u (L+l) 
UT (L) =UT (~+1) 
E(L)=E(L+l) 
ET (L) =ET (L+1) 
ER(l)=ER(2) 
ER( 2) =ER( 3) 
GO TO 27 

The rest of the  s ta tements  , from 
33 on, t o  45, comprise the  pro- 
cedure f o r  doubling 1% 

Statement 45 t o  the  end of the  
page, r e c i r c u l a t e  the program 
t o  the MOULTON'S procedure. 
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67 

69 

70 

7 1  

7 2  

7 3  

75 

78 

79 

I F ( A B  . L E .  . o l )  GO TO 73 
W=U (N4-1) -BETA*OMl*T (Ni-1) 
IF(W .GE. ( -PI )  GO TO 69 
GO TO 7 1  
IF ( I P  .EQ. 2 )  IX=l 
I F ( =  .NE. 1) GO TO 70 
AB=AB*. 5 
VK=VK+AB Statements 67 t o  73  
GO TO 6 comprise the  hunting 
AB=AB*2. procedure 
IP=1 
I F ( A B S ( A )  .GE.15.  .OR. ABS(B) . G E . 2 0 . )  GO TO 82 
VK=VK+AB 
GO TO 6 
I F ( I P  .EQ. 1) I X = 1  
I F ( =  .NE. 1) GO TO 72 
AB=AB*. 5 
VK=VK -AB 
GO TO 6 
IP=2 AB=AB>k 
LF(ABStA)  .GE.15 .  .OR. ABS(B)  .GE.20 . )  GO TO 82 
VK=VK -AB 
GO TO 6 
W=U(N+1)  - BETA;kOM2f<T(N+l) 
W R I T E ( t , 7 5 )  T(N+1) ,UV,UT(N+l )  , A , C , B  
FORMAT(GE16.7)  
TAT=. 5 
I F ( 1 K  .EQ. 9 .CR. ABS(A) . G E . 1 4 . 8  .OR. ABS(B)  . G E . 1 7 . 5 )  GO TO 9 1  
AC ( I K )  =A 

IK= IKS-1 
I F ( 1 K  .GE. 4)  GO TO 78 
I F ( I K  .EQ. 3) GO T O  80 
I F ( 1 K  .EQ. 2 )  GO TO 81 
A X T l = A C ( I K - 3 )  - A C ( I K - 2 )  
AXT2zAC ( I K - 2 )  -AC ( I K - 1 )  
A X T 3 = A C ( I K - l ) - A C ( I K - 3 )  
AYYI=BB(IK-3) -BB( IK-2)  
AYY2=BB ( I K - 2 )  -BB ( I K -  1) 
AYY 3=BB (IK- 1) -BB (IK-3) 
ATA1= (AC ( I K -  3) **2 ) + (BB ( I K -  3) 5;*2 ) 
ATA2= (AC ( I K - 2 )  9;*2 ) + (BB ( I K -  2 )  *f:2) 
ATA3=(AC(IK-l)**2)+(BB(IK-1)**2) 
VDT=2 . ; k ( A X T l * A ~ 2 - A X T 2 J l )  
IF (ABS(VDT)  .LE. . o o o o ~ )  GO TO 80 
VAT= (ATA l*AYY2+ATA2 * A m  3i-ATA.3 JeAYY 1 ) /VDT 
VBT=- (ATAl*AxT2+ATA2*AXT3+ATA3f:AXTlfiDT 
VCX=VAT-AC ( I K -  1) 
VCY'VBT-BB (IK- 1) 
VRR=S OXT ( (VCX**2 ) +(V CY**2 ) ) 
THT=THT*2 
IF(TH'T .GT. l . ) T H T = l .  
I F ( T K T  .ET.  .0625) GO TO 84 
TH3TA=. 4*TKT 
I F  (VXR . GE. 2.5) THETA=THT/VXR 

points[2(0) , y(0)  ?(O)]on the 1 "Spike Surface" w r i t t e n  here  

BB ( IK) =B 

Statements from 78 t o  
the  one j u s t  before 80 
(next page) comprise the  
c i r c u l a r  extension 
systems (Block 11 i n  
Fig. 3.3.1 Chapter 3) 
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VCX2=VAT-AC( I K - 2 )  
VCY2=VBT-BB ( I K - 2 )  
PIP=l .  
ALPHAzATAN2 ( (VCY2JrVCX-VCYfCVCX2) , (VCX2*VCX+VCY2*Vcy> ) 
IF  (ALPHA . LT. 0. ) PIP=- 1 
THETA=PIP*THETA 
ALPA1=2.*(SIN(THETA/2.)*f:2) 
ALPA2=S I N  (THETA) 
ALPA3=COS (THETA) 
AAA=VAT;kALPAl-VCYf<ALPA2+AC ( I K - 1 )  ;kALPA3 
BBB=VBTJ<ALPAl+VCX*ALPA2+BB ( I K - 1 )  *ALPA3 
THT=THT*. 5 
IF(ABS(AAA) .G'E.15. .OR. ABS(BBB) . G E . 2 0 . )  GO TO 79 
SDP=P I P;? (VAT --MA) / V KR 
CDP=PIPfc(VBT-BBB) /VRR 
BB ( IK) =BBB 
AC ( IK)=AAA 
AB=. 125  
VK=O . 
I X = 3  
IP=O 
GO TO 6 

80 DNP=BB ( IK - 1 ) -BB ( IK - 2 ) 
D N N = A C ( I K - 2 ) - A C ( I K - l >  
DDP=SQRT( (DNP;W!)+(DNNfW?) ) 
CDP=DNN/DDP 
S DP=DNP/ DDP 
P I P = l  
BBB=BB ( I K - ~ ) + P I P ~ ~ S O P  
AAA=AC" I K  - 1 ) - P IP*CD P 
BB*IK) =BBB 
AC ( I K )  =AAA 
AB=. 2 
IF(ABS(AAA) .GE.15 .  .OR. ABS(BBB) . G E . 2 0 )  GO TO 82  
VK = 0 .  
I X = 3  
IP=O 
GO TO 6 

81 AC(IK)=1.7 
BB ( IK) =BB ( IK- 1) 
A B = . 2 5  
VK =O. 
I X = 3  
IP=O 
GO TO 6 

82 W R I T E ( 6 , 8 3 )  T(N+1) , U V , U T ( N t l )  , A , C , B , I X  
83 F O R M A T ( 6 E 1 6 . 7 , 1 5 )  

I F ( 1 K  .EQ. 1) GO TO 9 1  
BB(IK) =BB(IK-~)+TAT*(BBB-BB(IK-~)) 
AC ( IK=AC ( IK- 1)+ (AAA-AC ( IK- 1) )*TAT 
TAT=TAT*. 5 
AB=. 25  
VK =O. 
I F ( T A T  .LT. .125 ) GO TO 9 1  
GO TO 6 

84 W R I T E ( 6 , 8 5 )  T(N+1) , UV,UT(N+l)  , A , C , B . T H T  

S t r a i g h t  l i n e  
extension sys  te rn .  

( B l o c k  96 i n  F ig .  3.3.1) 

Second t r i a l  p o i n t  
provided.  
( B l o c k  9a i n  F i g .  3.3.1) 

I f  hunting procedure 
f a i l s  a f t e r  a t r i a l  po in t  
w a s  provided by the  s t r a i g h t  
l ine extension m e t h o d ,  here, 
the a m o u n t  of  the  extension 
i s  halved, and the hunt ing 
procedure repeated 

If  hunting procedure f a i l s ,  
t h i s  result i s  p r i n t e d .  
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85 F O W T ( 7 E 1 6 . 7 )  
9 1  CONTINUE 

WRITE (6 , 92) G 
92 FORMAT(E16.7) 
95 CONTINUE 

S T O P  
END 

SUBROUTINE RT(T) 

COMMON/ROOT/A, B,  C, G I ,  G 2 ,  OM1, OM, B E T A / T O P T / E l ,  E 2 ,  E 3 ,  E4 
AZ = ABS(T) 
A Z 1  = 1. + AZ 
AZ2 = 1. - AZ These t w o  subroutines 
AEZ = EXP(-AZ) 
X = A*T*AEZ of E q .  3.2.1.  
Y = ( B * A Z ~  + C*T)*AEZ 

XT = A*AZ2*AEZ 

PMT = BETA*OMI 

CPM = COS(PM) 

c o m p u t e  the r i g h t  s i d e  

YT = ( - B*T + C*AZ2);kAEZ 

PM = PMT*T 

SPM = SIN(PM)  
GG1 = 2*G1 
GG12 = G l W 2  
E l  = GGl*(XT + PMTWPM) + GG12Jc(X + SPM) 
E 3  = - GGl*(X + SPM) 
E 4  = GGl*(YT -!- PMT*SPM) + GG12*(Y - CPM) 
RE TURN 
END 

FUNCTION F(U,UT)  
COMMON/TOPT/El, E 2 ,  E 3 ,  E 4  
F = (E1*UT + E2)*COS(U) + (E3*UT + E&)*STN(U) 
RETURN 
END 
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APPENDIX D 

SAMPLE PROGRAM TO COMPUTE EXPECTED EXPECTED NUMBER OF SPIKES PER SECOND FROM 
SPIKE BOUNDARIES 

1 

2 

1 
2 
3 
1 

4 

5 

6 

7 

DIMENSION C V ( 9 ) ,  YT(18) , Y(10,17) , XT(10,17) ,P(9,17) ,BETA(4) 
READ(5,l) BETA,CV,YT 
FORMAT(4F2.0/9F3.1/F4.0,16F4.1,F4.O 
D02K=1 , 18 
YT(K)=YT(K)/12 
D016K=1,4 
READ (5 , 3) (Y (I , 1) , I=l , lo) , ( (Y (I , J) , 1=1 , lo) , J=3 , 15 , 3) , 
(Y (I, 17) , I=l , 1C) , (XT(1,l) , I=l , lo) , ((XT( I, J) , 1-1 , 10) , J=3,15,3) , 
(XT(I, 17), 1=1 , 10) 
FO~~(l~F5.2/l~F~.2/~~F5.2/l~F5.2fl~F5.2flOF5.2fl~F5.2fl~F5.2/ 
10F5.2/ loF5.2/10F5.2/ 10F5.2/ 10F5.2/ 10F5.2/ 
PI=4. ;?ATAN( 1. ) 
AA= (BETA (K) / (BETA (K)+1. ) );?SQRT (SQRT (2. ) - 1. ) 
D07J=1,18 
DO7 1=1 , 10 
GO TO ( 7 , 4 , 7 , 5 , 6 , 7 , 5 , 6 , 7 , 5 ~ 6 ~ 7 ~ 5 ~ 6 , 7 , 4 ~ 7 , 7 ) 5  
Y (I , J)=. 59;(Y (I, J- 1)+Y (I , J+1)) 
XT( I , J)=. 5*(XT( I, J-l)+XT( I , J+l)) 
GO TO 7 

[A A is im(0)] 

Comments 
CV I CNR, carrier-to- 
noise ratio 
YT is + ( O )  

Y ( I , J) = ( 2 .  *Y ( I, J - l)+Y ( I , J+2) ) / 3. ' 

XT ( I , J) = (2. ;kXT (I , J - 1)+XT ( I , J+2) ) / 3. 
GO TO7 
Y ( I , J) = (Y ( I , J -2)+2. ;kY (I, J+l) ) / 3 
XT ( I , J ) = (XT (I , J -2) +2. ;?XT (I, 54-1) ) / 3. 
CONTINUE 
D013IK=1 , 9 
CNR=CV ( IK 1 
CRT=SQRT (CNR) 
PN=O . 
DOllJ=1,17 
DO1 11=1 , 9 
D=xT(I+~,J)-xT(I,J) 
A=(Y (1+1, J) -Y (I, 3)) /D 
B= (XT( 1+1 , J)*Y ( I , J) -XT( I , J)*Y (1+1 , J) ) /D 

F=A*B/E 
G=B*B/C 
AV1=1. 
AV2=1. 
AV3=1. 
Q2=(A-AA) /E 
XTT~=XT(I+~,J)+AA*Y(I+~,J) 
XTT2'XT (I , J)+AA*Y (I , J) 
SS 1=SGN (XTT1) 
S S 2 =SGN (XTT2 ) 
SS3=SGN2 (XTT1 ,XTT2) 
ROCK=ROF (YT (J+1) ,YT (J) , CRT) 
SO=SGN(ROCK) 
IF(SO.EQ.O.)GO TO 10 
AVO*ALOG (ABS (ROCK) ) -ALOG (8J -ALOG (PI) 
RRl=S62*ERFC (Y (I , J) WRT) 
SI=SGN(RR~) 
IF (S 1 NE. 0. )AVl=AVWALOG (ABS (RR1) ) -CNR* (XT (I , J) **2) 
RR2=SS l+cERF C (Y ( I+1 , J) WRT) 
SO-SGN(RR2) 

C -AfcA+ 1. 
E=SQRT (C) 
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Y is y(0) 

XT is G ( 0 )  

XT(I,J) yY(IyJ)y 
YT(J) are the coordinates 
of the approximating 
plane segments. 

Intergral (Equation 3.4.4) 
is evaluated in closed 
form. Termso of the 
resulting complicated 
expression which multiply 
each other, are 
evaluated in this program 
in terms of logarithims, 
to avoid underflow 



IF  (S2. NE. 0. )AV2=AVO+ALOG (ABS (RR2) )  -CNR*(XT( 14-1 , J)**2) 
ABC= (1. +AA*A) 
ABB=AA*B/ABC 
RR3=E RF C (B *CRT / ABC) *S S 3 
S 3=SGN (RR3) 
IF*S~ .NE.  0. )AV3=AVWALOG(ABS (RR3) )  -CNR*(ABB**2) 
P ( I, J ) =S O* ( S 1*EXP (AV I) - S 2 *EXP (AV2 )+S 3*EXP (AV3) ) 

N o t e  a l so  that  
Y T ( J + l )  = jr!O)+A9, 

S Q 2  = SGN (42) 
IF(SQ2.EQ.O.)GO TO 11 
RR4=ROFT(SS3,SS~*(E*XT(I+~yJ)+F),SS2*(E*XT(Iy~)+F)y(F-E*ABB),CRT) 
S4=SGN(RR4) 

. and Y T ( J )  E 
9 (0) -A$- w h e n  
referring t o  Fig.3.4.1 

IF(S4.EQ.O:)GO TO 11 i n  tex t .  
AV4=AVOtALOG (ABS (42) )+ALOG(ABS (RR4) ) -G*CNR 
P ( I ,  J ) = P ( I ,  J )  -SQ2*S4*EXP(AV4) 
GO TO 11 s u m m e d  here. 

R e s u l t  of N f o r  each plane S e g m e n t  

10 P ( I , J ) = O .  
11 PN=PN+P(I,J) 

W R I T E ( 6 , 1 2 ) P N Y C N R  
12  FORMAT (2316.7) 
13 CONTINUE 

14 FORMAT (F5.4,15) 
16 CONTINUE 

S T O P  
END 

W R I T E ( 6 , 1 4 )  BETA(K) ,K  

FUNCTION ROF(X,Y,Z) 
XX=x*z 
YY’Y*Z 
I F (  (ABS (XX). LE.L.) .AND. (ABS (YY) .LE. l . ) ) G O  TO 1 
GO TO 2 

RE TURN 

GO TO 4 

RE TURN 

GO TO 3 

RE TURN 
END 

1 ROF=ERF (XX) -ERF (YT) 

2 IF((XX.GT.k.).AND.(YY.GT.I.))GO TO 3 

3 ROF=ERFC (YY) -ERFC (xx) 
4 IF( (XX.LT.  ( - 1 ) ) A N D .  (YY.LT. ( - 1 . ) ) ) G O  TO 5 

5 ROF’ERFC (-XX) -ERFC( -YY) 

FUNCTION ROFT (S ,X  , Y , Z , C) 
IF(S.EQ.O.)GO TO 1 
GO TO 2 

RETURN 

GO TO 4 

RETURN 

RETLlRN 
END 

1 ROFT=ROF (X,Y , C) 

2 IF(S.GT.O.)GO TO 3 

3 ROFT=ROF(X,Z,C)-ROF(Y, (-Z)  , C )  

4 ROFT=ROF(X, (-Z) , c ) -ROF(Y,Z,C)  
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FUNCTION SGN2 (X, Y) 
TT=X*Y 
IF(TT.GT.O.)GO TO 1 
GO TO 2 

1 SGN2=O 
RETURN 
END 

FUNCTION SGN (X) 
IF(X.GT.O.)GO TO 1 
TO TO 2 

1 SGN=l. 
RETURN 

2 IF(X.LT.O.)GO TO 3 
GO TO 4 

3 SGN=-1. 
RETURN 

4 SGN=O. 
RETURN 
END 
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APPENDIX E 

Derivation of Integral to Evaluate Expected Number of 

Spikes per Second. 

The output of an FM Discriminator, when ntegrated'is: (Equation 

1. 4. 1 in text) 

VFMD(t) = am (t) t arctan ( 
x(t) cos+ t y(t) sin +m 

l tx ( t )  sin Qim-y(t) cos Qi 1 m 
m 

Where 

(t) = phase 'of'the modulating signal. m 

x(t)  = quadrature low pass equivalent noise. 

y(t) = in phase low pass equivalent noise. 

Let us introduce, two new' random processes, 

x' (t) = x(t) cos Qi ,(t) t y(t) sin Qim(t) 

y1 (t) = y(t) cos Qi (t) - x(t) sin Qim(t) m 

x' (t), and yr  (t), a r e  independent Gaussian random processes, have zero 

meank, and have variances { u 2= E[x (t)] = E[y (t)] 1 the same as  x(t) 2 2 

and y(t) -if 

1) x(t) and y(t) a r e  Gaussian, zero mean, variance 02, and 

'independent. 

2 )  am(t) i s  any deterministic function of time. 

Substituting Equation E2 in E l  we get: 

x' (t) ] 
1 -Y' (t) 

(t) = CI, (t)  t arctan [ V~~~ m 

From Rice'. 9, the probability of receiving a positive spike in 

time dt, i s  the probability that y' (t) - > 1, X I  (t) < - 0, and t A '  (t) r< 
dt x' (t) < -3' (t) - 
2 "  

dt 

This can be seen from the figure below: 
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CARRIER PLUS NOISE PHASOR \. 

y ' ( t  1 1 -XI( t 12 dt  

b 

positive spike means + increases by 271. radians 

F i g .  E l .  1, Phasor Diagram Illustrating Spike Generation 

F rom this, he gets the result: 

c o c o  

N+ = f ,f 12 ' fxl  y l  641:) = 0 ,  2 (t), y '  ( t ) )dl  ' (t), dy' (t) (E41 

where: N t  = Expected number of positive spikes/ sec.  1 0  

joint density function. (x, f' y' 1 fx' rE ' y' 

However, in the Most Likely Noise approach, spikes a r e  implied 

by spike regions in 2, y, space, or  by transformation, 2' , y', Q'space. 

We st i l l  consider the occurrance of a spike by observing the noise as  it 

crosses  the ca r r i e r  vector during a t ime interval, dt, thus implying 

the condition- 1 %  (t)l 2 < X I  (t) < 1 21 (t) I $ 
account for the possibility of both positive and negative 2 (t). ) 

we wil l  now consider that y' (t), 2' (t) and 9' (t) l ie  within a "spike region" 

S' . 

( absolute value signs 2 

However 

Thus the expected number of spikes per second is:  

(x' (t) = 0, 2' (t), y '  ( t)  9' (t)) d2' (t), dy' (t), df (t) 
S' 

(E5 1 

Since initial time, o r  the t ime of the occurrance of a spike is 

arbi t rary,  we can set  t = O  in Equation E5. Also, f rom Equation E2, 
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2' ( 0 )  = f ( 0 )  t Gm(0) y(0) (E6) 

Transforming Equation E5 to the x(t), y(t)  random processes we 

get the desired result (Equation 3 . 4 .  1 in text) 

(x=O,S ,y , f )  d f  dydf  (E7 1 
S 

where S is now the spike region ( or  regions) in the f (o), y(!l), 9 (0) space. 
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APPENDIX F 

Comparison of Spike Boundaries of Phase Locked Loops 

with Different Filter Pole Positions 

It can be seen from Figs. F1. 1 and F 1. 2 that the Spike Boundaries, 

corresponding to a maximally flat response, is slightly further f rom the 

origin than a re  the Spike Boundaries for other responses. 

for both the second and the third order loops. (Note; for ease of comparison, 

This is true 

only the section of the spike boundary f o r  which -j; (0) = 0 i s  shown). 

The conclusion to drawn f rom this is that a maximally flat response 

should give slightly better response than other responses. 

Incidentally, distance of a spike boundary to the origin, should be 

taken as  the radius of a circle, centered at  the origin, and tangent to the 

spike boundary. 
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